Skip to main content
Log in

The effect of structural characteristics of ZnO and NiO thin films on the performance of NiO/ZnO photodetectors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Material properties play an important role in the fabrication of optoelectronic devices such as photodetectors because it is ultimately reflected in their efficiency and performance. To fabricate a NiO/ZnO heterojunction with better structural properties using a low-cost and uncomplicated deposition process, we studied the influence of NiO and ZnO thickness by taking different volumes of spray solution (5, 10, and 15 ml) on the structural and morphological properties that were investigated using the spray pyrolysis technique. When the films' thickness increased, the crystalline structure of both films improved. The deposited ZnO layers have a hexagonal Wurtzite structure with preferable growth orientations along (002). The NiO X-ray diffraction patterns showed that the films were in cubic phase with orientation (111) and the peak density increased with the film thickness. According to our experimental conditions and XRD results, we suggest that thicker NiO and ZnO are the optimal films to fabricate a NiO/ZnO heterostructure. It is found that Raman and XRD results confirm the formation of NiO/ZnO heterostructure. The morphology of NiO/ZnO is smooth and completely covers the substrate without any pinholes. The further investigation related to the effect of NiO and ZnO thin films' structural properties on NiO/ZnO heterostructure photodetector performance is presented using the simulations. It is worth mentioning that based on the suggested transport models, the results confirm that the origin of the dark current has been attributed to the tunneling and thermionic emission at the interface while bulk defects, leading to the increase Shockley–Read–Hall recombination and generation, control the carrier transport. Furthermore, we studied the effect of Gaussian and tail acceptor/donor defects on the current–voltage (J–V) characteristics and responsivity. The obtained results showed that increasing NiO tail states cause an increase in tunneling current. In contrast, the deep defects density in both ZnO and NiO affects the photodetection characteristics, resulting in a decrease in responsivity and photocurrent when these defects increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not applicable in this manuscript.

References

  1. M. Patel, H.S. Kim, J. Kim, All transparent metal oxide ultraviolet photodetector. Adv. Electron. Mater. 1, 1–9 (2015). https://doi.org/10.1002/aelm.201500232

    Article  CAS  Google Scholar 

  2. A.K. Rana, M. Kumar, D.K. Ban, C.P. Wong, J. Yi, J. Kim, Enhancement in performance of transparent p-NiO/n-ZnO heterojunction ultrafast self-powered photodetector via pyro-phototronic effect. Adv. Electron. Mater. 5, 1–10 (2019). https://doi.org/10.1002/aelm.201900438

    Article  CAS  Google Scholar 

  3. M. Patel, J. Kim, Transparent NiO/ZnO heterojunction for ultra-performing zero-bias ultraviolet photodetector on plastic substrate. J. Alloys Compd. 729, 796–801 (2017). https://doi.org/10.1016/j.jallcom.2017.09.158

    Article  CAS  Google Scholar 

  4. M.R. Das, A. Mukherjee, P. Mitra, Structural, optical and ac electrical characterization of CBD synthesized NiO thin films: in fluence of thickness. Phys. E Low-Dimens. Syst. Nanostruct. 93, 243–251 (2017). https://doi.org/10.1016/j.physe.2017.06.018

    Article  CAS  Google Scholar 

  5. Z.H. Xiao, X.F. Xia, S.J. Xu, Y.P. Luo, W. Zhong, H. Ou, E.S. Jiang, Characterizations of nickel oxide thin films prepared by reactive radio frequency magnetron sputtering (2015)

  6. D. Ao, Z. Li, Y. Fu, Y. Tang, S. Yan, X. Zu, Heterostructured NiO/ZnO nanorod arrays with significantly enhanced H2S sensing performance. Nanomaterials 9, 26–31 (2019)

    Article  Google Scholar 

  7. Z. Shi, T. Xu, D. Wu, Y. Zhang, B. Zhang, Y. Tian, X. Li, G. Du, Semi-transparent all-oxide ultraviolet light-emitting diodes based on ZnO/NiO-core/shell nanowires. Nanoscale (2015). https://doi.org/10.1039/C5NR07236K

    Article  Google Scholar 

  8. Y. Luo, Z. Dong, Y. Chen, Y. Zhang, Y. Lu, T. Xia, L. Wang, S. Li, W. Zhang, W. Xiang, C. Shan, Self-powered NiO@ ZnO-nanowire-heterojunction ultraviolet micro-photodetectors. Opt. Mater. Express 9, 2775–2784 (2019)

    Article  CAS  Google Scholar 

  9. C. Wei, J. Xu, S. Shi, Y. Bu, R. Cao, J. Chen, J. Xiang, X. Zhang, L. Li, The improved photoresponse properties of self-powered NiO / ZnO heterojunction arrays UV photodetectors with designed tunable Fermi level of ZnO. J. Colloid Interface Sci. 577, 279–289 (2020). https://doi.org/10.1016/j.jcis.2020.05.077

    Article  CAS  Google Scholar 

  10. M. Patel, H. Kim, H. Park, J. Kim, Active adoption of void formation in metal-oxide for all transparent super-performing photodetectors. Nat. Publ. Gr. 6, 1–11 (2016). https://doi.org/10.1038/srep25461

    Article  CAS  Google Scholar 

  11. C.W. Fan, High-performance organic/inorganic hybrid ultraviolet p-NiO/PVK/n-ZnO heterojunction photodiodes with a poly(N-vinylcarbazole) insertion layer. J. Mater. Chem. C 7, 3529–3534 (2019). https://doi.org/10.1039/c8tc04950e

    Article  CAS  Google Scholar 

  12. B.O. Jung, Y.H. Kwon, D.J. Seo, D.S. Lee, H.K. Cho, Ultraviolet light emitting diode based on p-NiO/n-ZnO nanowire heterojunction. J. Cryst. Growth. 370, 314–318 (2013). https://doi.org/10.1016/j.jcrysgro.2012.10.037

    Article  CAS  Google Scholar 

  13. A.O.M. Alzahrani, M.S. Abdel, M.A.M.S. Aida, Effect of ZnO layer thickness upon optoelectrical properties of NiO / ZnO heterojunction prepared at room temperature. J. Mater. Sci. Mater. Electron. (2018). https://doi.org/10.1007/s10854-018-9721-9

    Article  Google Scholar 

  14. T. Tangcharoen, W. Klysubun, C. Kongmark, Synthesis of nanocrystalline NiO/ZnO heterostructured composite powders by sol-gel auto combustion method and their characterizations. J. Mol. Struct. 1156, 524–533 (2018). https://doi.org/10.1016/j.molstruc.2017.12.019

    Article  CAS  Google Scholar 

  15. K.X. Steirer, K.L. Ou, N.R. Armstrong, E.L. Ratcliff, Critical interface states controlling rectification of ultrathin NiO-ZnO p-n heterojunctions. ACS Appl. Mater. Interfaces 9, 31111–31118 (2017). https://doi.org/10.1021/acsami.7b08899

    Article  CAS  Google Scholar 

  16. A.K. Hassan, G.M. Ali, Thin film NiO/BaTiO 3/ZnO heterojunction diode-based UVC photodetectors. Superlattices Microstruct. 147, 106690 (2020). https://doi.org/10.1016/j.spmi.2020.106690

    Article  CAS  Google Scholar 

  17. P. Felbier, All-inorganic heterostructure light-emitting devices based on ZnO nanoparticles, DuEPublico (2015)

  18. Physics of Semiconductor Devices (2007)

  19. S. Chala, N. Sengouga, F. Yakuphanoğlu, S. Rahmane, M. Bdirina, İ Karteri, Extraction of ZnO thin film parameters for modeling a ZnO/Si solar cell. Energy 164, 871–880 (2018). https://doi.org/10.1016/j.energy.2018.09.035

    Article  CAS  Google Scholar 

  20. D.S. Software, ATLAS User’s Manual Device Simulation Software, Telephone, pp. 567–1000 (2006), www.silvaco.com

  21. H. Hakkoum, T. Tibermacine, N. Sengouga, O. Belahssen, Effect of the source solution quantity on optical characteristics of ZnO and NiO thin films grown by spray pyrolysis for the design NiO / ZnO photodetectors. Opt. Mater. (Amst.) 108, 110434 (2020). https://doi.org/10.1016/j.optmat.2020.110434

    Article  CAS  Google Scholar 

  22. Z.G. Yang, L.P. Zhu, Y.M. Guo, W. Tian, Z.Z. Ye, B.H. Zhao, Valence-band offset of p-NiO/n-ZnO heterojunction measured by X-ray photoelectron spectroscopy. Phys. Lett. Sect. A Gen. Solid State Phys. 375, 1760–1763 (2011). https://doi.org/10.1016/j.physleta.2011.03.021

    Article  CAS  Google Scholar 

  23. C. Wu, S. Wang, T. Lin, Y. Tu, C. Hung, P. Liu, Y. Chin, K. Uang, T. Chen, PS-7–20 Hydrothermal growth of single-crystalline ZnO thin films and theirs application on UV photodetectors. Int. Conf. Solid State Device 1, 260–261 (2015)

    Google Scholar 

  24. R. Deng, B. Yao, Y.F. Li, Y.M. Zhao, B.H. Li, C.X. Shan, Z.Z. Zhang, D.X. Zhao, J.Y. Zhang, D.Z. Shen, X.W. Fan, R. Deng, B. Yao, Y.F. Li, Y.M. Zhao, B.H. Li, C.X. Shan, Z.Z. Zhang, X-ray photoelectron spectroscopy measurement of n -ZnO / p -NiO heterostructure valence-band offset X-ray photoelectron spectroscopy measurement of n -ZnO / p -NiO heterostructure valence-band offset. Appl. Phys. Lett. 022108, 92–95 (2012). https://doi.org/10.1063/1.3072367

    Article  CAS  Google Scholar 

  25. M. Sultan, S. Mumtaz, A. Ali, M.Y. Khan, T. Iqbal, Band alignment and optical response of facile grown NiO/ZnO nano-heterojunctions. Superlattices Microstruct. (2017). https://doi.org/10.1016/j.spmi.2017.09.019

    Article  Google Scholar 

  26. A. Sajid, A.M. Elseman, J. Ji, S. Dou, H. Huang, P. Cui, D. Wei, M. Li, Novel hole transport layer of nickel oxide composite with carbon for high-performance perovskite solar cells. Chin. Phys. B 27, 017305 (2018). https://doi.org/10.1088/1674-1056/27/1/017305

    Article  CAS  Google Scholar 

  27. V. Kumar, S.K. Singh, H. Sharma, S. Kumar, M.K. Banerjee, A. Vij, Investigation of structural and optical properties of ZnO thin films of different thickness grown by pulsed laser deposition method. Phys. B Condens. Matter. 552, 221–226 (2019). https://doi.org/10.1016/j.physb.2018.10.004

    Article  CAS  Google Scholar 

  28. P. Sharma, Z. Guler, N. Jackson, Development and characterization of confocal sputtered piezoelectric zinc oxide thin film. Vacuum 184, 109930 (2021). https://doi.org/10.1016/j.vacuum.2020.109930

    Article  CAS  Google Scholar 

  29. R. Mariappan, V. Ponnuswamy, P. Suresh, N. Ashok, P. Jayamurugan, Influence of film thickness on the properties of sprayed ZnO thin films for gas sensor applications. Superlattices Microstruct. 71, 238–249 (2014). https://doi.org/10.1016/j.spmi.2014.03.029

    Article  CAS  Google Scholar 

  30. A. Zhong, J. Tan, H. Huang, S. Chen, M. Wang, S. Xu, Thickness effect on the evolution of morphology and optical properties of ZnO films. Appl. Surf. Sci. 257, 4051–4055 (2011). https://doi.org/10.1016/j.apsusc.2010.11.173

    Article  CAS  Google Scholar 

  31. R. Yogamalar, R. Srinivasan, A. Vinu, K. Ariga, A.C. Bose, X-ray peak broadening analysis in ZnO nanoparticles. Solid State Commun. 149, 1919–1923 (2009). https://doi.org/10.1016/j.ssc.2009.07.043

    Article  CAS  Google Scholar 

  32. A. Katoch, G.J. Sun, S.W. Choi, J.H. Byun, S.S. Kim, Competitive influence of grain size and crystallinity on gas sensing performances of ZnO nanofibers. Sens. Actuators B Chem. 185, 411–416 (2013). https://doi.org/10.1016/j.snb.2013.05.030

    Article  CAS  Google Scholar 

  33. K. Sajilal, A.M.E. Raj, Optik effect of thickness on physico-chemical properties of p-NiO ( bunsenite ) thin films prepared by the chemical spray pyrolysis ( CSP ) technique. Opt. Int. J. Light Electron. Opt. 127, 1442–1449 (2016). https://doi.org/10.1016/j.ijleo.2015.11.026

    Article  CAS  Google Scholar 

  34. M. Jlassi, I. Sta, M. Hajji, H. Ezzaouia, Applied Surface Science Synthesis and characterization of nickel oxide thin films deposited on glass substrates using spray pyrolysis. Appl. Surf. Sci. 308, 199–205 (2014). https://doi.org/10.1016/j.apsusc.2014.04.134

    Article  CAS  Google Scholar 

  35. K. Sajilal, A.M. Ezhil, Effect of thickness on structural and magnetic properties of NiO thin fi lms prepared by chemical spray pyrolysis ( CSP ) technique. Mater. Lett. 164, 547–550 (2016). https://doi.org/10.1016/j.matlet.2015.11.065

    Article  CAS  Google Scholar 

  36. A. Moumen, B. Hartiti, E. Comini, Z. El khalidi, H.M.M.M. Arachchige, S. Fadili, P. Thevenin, Preparation and characterization of nanostructured CuO thin films using spray pyrolysis technique. Superlattices Microstruct. 127, 2–10 (2019). https://doi.org/10.1016/j.spmi.2018.06.061

    Article  CAS  Google Scholar 

  37. Z. El khalidi, E. Comini, B. Hartiti, A. Moumen, H.M.M. MunasingheArachchige, S. Fadili, P. Thevenin, A. Kamal, Effect of vanadium doping on ZnO sensing properties synthesized by spray pyrolysis. Mater. Des. 139, 56–64 (2018). https://doi.org/10.1016/j.matdes.2017.10.074

    Article  CAS  Google Scholar 

  38. A. Moumen, B. Hartiti, P. Thevenin, M. Siadat, Synthesis and characterization of CuO thin films grown by chemical spray pyrolysis. Opt. Quantum Electron. (2017). https://doi.org/10.1007/s11082-017-0910-1

    Article  Google Scholar 

  39. P.S. Patil, L.D. Kadam, Preparation and characterization of spray pyrolyzed nickel oxide (NiO) thin films. Appl. Surf. Sci. 199, 211–221 (2002). https://doi.org/10.1016/S0169-4332(02)00839-5

    Article  CAS  Google Scholar 

  40. L. Qiao, X. Wang, X. Sun, X. Li, Y. Zheng, D. He, Single electrospun porous NiO-ZnO hybrid nanofibers as anode materials for advanced lithium-ion batteries. Nanoscale 5, 3037–3042 (2013). https://doi.org/10.1039/c3nr34103h

    Article  CAS  Google Scholar 

  41. V.E. Sandana, D.J. Rogers, F. Hosseini Teherani, P. Bove, N. Ben Sedrine, M.R. Correia, T. Monteiro, R. McClintock, M. Razeghi, Structural, optical, electrical and morphological study of transparent p-NiO/n-ZnO heterojunctions grown by PLD. Oxide-Based Mater. Devices VI 9364, 936410 (2015). https://doi.org/10.1117/12.2177427

    Article  Google Scholar 

  42. C. Luo, D. Li, W. Wu, Y. Zhang, C. Pan, Preparation of porous micro–nano-structure NiO/ZnO heterojunction and its photocatalytic property. RSC Adv. 4, 3090–3095 (2014). https://doi.org/10.1039/C3RA44670K

    Article  CAS  Google Scholar 

  43. E. Muchuweni, T.S. Sathiaraj, H. Nyakotyo, Synthesis and characterization of zinc oxide thin films for optoelectronic applications. Heliyon 3, e00285 (2017). https://doi.org/10.1016/j.heliyon.2017.e00285

    Article  CAS  Google Scholar 

  44. P. Salunkhe, P. Bhat, D. Kekuda, Physical Performance evaluation of transparent self-powered n-ZnO / p-NiO heterojunction ultraviolet photosensors. Sens. Actuators A. Phys. 345, 113799 (2022). https://doi.org/10.1016/j.sna.2022.113799

    Article  CAS  Google Scholar 

  45. M. Jlassi, I. Sta, M. Hajji, B. Ben-Haoua, H. Ezzaouia, Effect of annealing atmosphere on the electrical properties of nickel oxide / zinc oxide p – n junction grown by sol – gel technique. Mater. Sci. Semicond. Process. 26, 395–403 (2014). https://doi.org/10.1016/j.mssp.2014.05.008

    Article  CAS  Google Scholar 

  46. A. Echresh, C.O. Chey, M. ZargarShoushtari, V. Khranovskyy, O. Nur, M. Willander, UV photo-detector based on p-NiO thin film/n-ZnO nanorods heterojunction prepared by a simple process. J. Alloys Compd. 632, 165–171 (2015). https://doi.org/10.1016/j.jallcom.2015.01.155

    Article  CAS  Google Scholar 

  47. A.H. Fallahpour, S. Kienitz, P. Lugli, Origin of dark current and detailed description of organic photodiode operation under different illumination intensities. IEEE Trans. Electron. Devices 6, 1–6 (2017)

    Google Scholar 

  48. R. Karsthof, H. von Wenckstern, J. Zúñiga-Pérez, C. Deparis, M. Grundmann, Nickel oxide-based heterostructures with large band offsets. Phys. Status Solidi Basic Res. (2019). https://doi.org/10.1002/pssb.201900639

    Article  Google Scholar 

  49. M. Grundmann, R. Karsthof, H. Von Wenckstern, Interface recombination current in type II heterostructure bipolar diodes. ACS Appl. Mater. Interfaces 6, 14785–14789 (2014). https://doi.org/10.1021/am504454g

    Article  CAS  Google Scholar 

  50. R. Karsthof, P. Räcke, Z. Zhang, H. von Wenckstern, Semi-transparent NiO/ZnO UV photovoltaic cells. Phys. Status Solidi A 37, 30–37 (2016). https://doi.org/10.1002/pssa.201532625

    Article  CAS  Google Scholar 

  51. X. Ji, B. Liu, H. Tang, X. Yang, X. Li, H. Gong, B. Shen, P. Han, F. Yan, X. Ji, B. Liu, H. Tang, X. Yang, X. Li, 2.6 μm MBE grown InGaAs detectors with dark current of SRH and TAT. AIP Adv. 4, 087135 (2015). https://doi.org/10.1063/1.4894142

    Article  CAS  Google Scholar 

  52. K. Ang, Impact of field-enhanced band-traps-band tunneling on the dark current generation in germanium p-i-n photodetector. Appl. Phys. Lett. (2009). https://doi.org/10.1063/1.3151913

    Article  Google Scholar 

  53. W.B. Zhang, N. Yu, W.Y. Yu, B.Y. Tang, Stability and magnetism of vacancy in NiO: a GGA+U study. Eur. Phys. J. B 64, 153–158 (2008). https://doi.org/10.1140/epjb/e2008-00303-x

    Article  CAS  Google Scholar 

  54. Z. Sun, Y. Zhao, M. He, L. Gu, C. Ma, K. Jin, D. Zhao, N. Luo, Q. Zhang, N. Wang, W. Duan, C.W. Nan, Deterministic role of concentration surplus of cation vacancy over anion vacancy in bipolar memristive NiO. ACS Appl. Mater. Interfaces 8, 11583–11591 (2016). https://doi.org/10.1021/acsami.6b01400

    Article  CAS  Google Scholar 

  55. T. Guo, Y. Luo, Y. Zhang, Y.H. Lin, C.W. Nan, Controllable growth of ZnO nanorod arrays on NiO nanowires and their high UV photoresponse current. Cryst. Growth Des. 14, 2329–2334 (2014). https://doi.org/10.1021/cg500031t

    Article  CAS  Google Scholar 

  56. J.D. Hwang, C.I. Jiang, S.B. Hwang, P-NiO/n-ZnO heterojunction photodiodes with an MgZnO/ZnO quantum well insertion layer. Mater. Sci. Semicond. Process. 105, 104711 (2020). https://doi.org/10.1016/j.mssp.2019.104711

    Article  CAS  Google Scholar 

  57. N. Park, K. Sun, Z. Sun, Y. Jing, D. Wang, High efficiency NiO/ZnO heterojunction UV photodiode by sol-gel processing. J. Mater. Chem. C 1, 7333–7338 (2013). https://doi.org/10.1039/c3tc31444h

    Article  CAS  Google Scholar 

  58. J.F. Wager, J.F. Wager, Real- and reciprocal-space attributes of band tail states Real- and reciprocal-space attributes of band tail states. AIP Adv. 7, 125321 (2017)

    Article  Google Scholar 

  59. M. Labed, N. Sengouga, K.H. Kim, Y.S. Rim, Numerical simulation on thickness dependency and bias stress test of ultrathin IGZO thin-film transistors via a solution process. Phys. Status Solidi (A) 1800987, 1–7 (2019). https://doi.org/10.1002/pssa.201800987

    Article  CAS  Google Scholar 

  60. Z. Zheng, X. Zu, Y. Zhang, W. Zhou, Rational design of type-II nano-heterojunctions for nanoscale optoelectronics. Mater. Today Phys. 15, 100262 (2020). https://doi.org/10.1016/j.mtphys.2020.100262

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

HH was involved in writing—original draft preparation, growth of thin films, results and interpretation of simulation results. AM was involved in writing, formal analysis and interpretation of experimental results. MG was involved in synthesis of materials. NS and EC performed validation and writing—review & editing. EC was involved in methodology.

Corresponding author

Correspondence to Nouredine Sengouga.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hakkoum, H., Moumen, A., Ghougali, M. et al. The effect of structural characteristics of ZnO and NiO thin films on the performance of NiO/ZnO photodetectors. J Mater Sci: Mater Electron 33, 26604–26618 (2022). https://doi.org/10.1007/s10854-022-09336-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09336-w

Navigation