Skip to main content

Advertisement

Log in

Study on thermally stabilized vanadium dioxide nanoparticles solid–solid phase change thermal energy storage material

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Heat storage is a feature that can be used in many components or applications. In the case of phase change materials (PCMs), the performance in heat storage will depend on the latent heat when the phase change occurs. Solid–solid PCMs are an improvement over traditional solid–liquid PCMs because problems related to their leak-off and limited applications are eliminated. Vanadium dioxide (VO2) is a material that has been shown to be a PCM in the monoclinic phase (M). In this work, VO2 nanoparticles were synthesized by the hydrothermal and post-vacuum annealing method at a relatively low temperature. The relationship between the effect of annealing temperature and morphology on the heat storage capacity of VO2 nanoparticles is evaluated. The results show that the VO2 nanoparticles resulting from the 300 to 500 °C vacuum annealing presented the endothermic and exothermic peaks for the reversible transition of monoclinic VO2 to the rutile (R) phase. The highest latent heat of 22.87 Jg− 1 for the VO2 annealed at 500 °C. The VO2(M) nanoparticles presented good thermal stability and oxidation resistance below 265 °C with excellent cycling stability for at least 20 thermal cycles, which could be promising for technical application in thermal energy management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available at the corresponding author and can be presented for reasonable requests.

 References

  1. L. Miró, J. Gasia, L.F. Cabeza, Appl. Energy 179, 284 (2016). https://doi.org/10.1016/j.apenergy.2016.06.147

    Article  CAS  Google Scholar 

  2. J.M.P.Q. Delgado, J.C. Martinho, A. Vaz Sá, A.S. Guimarães, V. Abrantes, Therm. Energy Storage Phase Change Materials: Literature Rev. Appl. Build. Mater. (2019). https://doi.org/10.1007/978-3-319-97499-6_1

    Article  Google Scholar 

  3. H.M. Ali, A. Arshad, M. Jabbal, P.G. Verdin, Int. J. Heat. Mass. Transf. 117, 1199 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.065

    Article  CAS  Google Scholar 

  4. H. Nazir, M. Batool, F.J. Bolivar-Osorio, M. Isaza-Ruiz, X. Xu, K. Vignarooban, P. Phelan, Inamuddin, A.M. Kannan, Int. J. Heat. Mass. Transf. 129, 491 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.126

    Article  CAS  Google Scholar 

  5. K. Venkateswarlu, K. Ramakrishna, J. Brazilian Soc, Mech. Sci. Eng. 44, 1 (2022). https://doi.org/10.1007/s40430-021-03308-7

    Article  CAS  Google Scholar 

  6. W. Su, J. Darkwa, G. Kokogiannakis, Renew. Sustain. Energy Rev. 48, 373 (2015). https://doi.org/10.1016/j.rser.2015.04.044

    Article  CAS  Google Scholar 

  7. A. Fallahi, G. Guldentops, M. Tao, S. Granados-Focil, S. Van Dessel, Appl. Therm. Eng. 127, 1427 (2017). https://doi.org/10.1016/j.applthermaleng.2017.08.161

    Article  Google Scholar 

  8. Y. Zhang, W. Xiong, W. Chen, Y. Zheng, Nanomaterials 11, 1 (2021). https://doi.org/10.3390/nano11020338

    Article  CAS  Google Scholar 

  9. Z. Cao, X. Xiao, X. Lu, Y. Zhan, H. Cheng, G. Xu, Sci. Rep. 6, 1 (2016). https://doi.org/10.1038/srep39154

    Article  CAS  Google Scholar 

  10. M.F. Vostakola, B.E. Yekta, S.M. Mirkazemi, J. Electron. Mater. 46, 6689 (2017). https://doi.org/10.1007/s11664-017-5712-5

    Article  CAS  Google Scholar 

  11. J. Qi, C. Niu, Energy Procedia 17, 1953 (2012). https://doi.org/10.1016/j.egypro.2012.02.338

    Article  CAS  Google Scholar 

  12. Y. Chen, H. Xu, H.X. Feng, Mater. Res. Innov. 12, 78 (2008). https://doi.org/10.1179/143307508X304273

    Article  CAS  Google Scholar 

  13. M. Li, S. Magdassi, Y. Gao, Y. Long, Small (2017). https://doi.org/10.1002/smll.201701147

    Article  Google Scholar 

  14. Y. Luo, M. Li, G. Li, Chin. J Chem Phys 27, 471 (2014). https://doi.org/10.1063/1674-0068/27/04/471-474

    Article  CAS  Google Scholar 

  15. J. Hou, Z. Wang, Z. Ding, Z. Zhang, J. Zhang, Sol. Energy Mater. Sol. Cells 176, 142 (2018). https://doi.org/10.1016/j.solmat.2017.11.030

    Article  CAS  Google Scholar 

  16. S.R. Popuri, M. Miclau, A. Artemenko, C. Labrugere, A. Villesuzanne, M. Pollet, Inorg. Chem. 52, 4780 (2013). https://doi.org/10.1021/ic301201k

    Article  CAS  Google Scholar 

  17. L. Zhang, J. Yao, Y. Guo, F. Xia, Y. Cui, B. Liu, Y. Gao, Ceram. Int. 44, 19301 (2018). https://doi.org/10.1016/j.ceramint.2018.07.157

    Article  CAS  Google Scholar 

  18. Y. Cui, Y. Ke, C. Liu, Z. Chen, N. Wang, L. Zhang, Y. Zhou, S. Wang, Y. Gao, Y. Long, Joule 2, 1707 (2018). https://doi.org/10.1016/j.joule.2018.06.018

    Article  CAS  Google Scholar 

  19. H.J. Song, M. Choi, J.C. Kim, S. Park, C.W. Lee, S.H. Hong, B.K. Kim, D.W. Kim, Sci. Rep. 6, 6 (2016). https://doi.org/10.1038/srep30202

    Article  CAS  Google Scholar 

  20. ASTM Standard E1269-01, “Standard Test Method for Determining Specific Heat Capacity by Differential Scanning Calorimetry” Vol 14.01 ASTM International, West Conshohocken, PA, 2018. https://doi.org/10.1520/E1269-11R18

  21. C. Leroux, G. Nihoul, G. Van Tendeloo, Phys. Rev. B. 57, 5111 (1998). https://doi.org/10.1103/PhysRevB.57.5111

    Article  CAS  Google Scholar 

  22. S. Cullity, B.D.; Stock, SR, Elements of X-Ray Diffraction, Third edit (Pearson, New York, 2001), pp. 281–284

    Google Scholar 

  23. F. Sediri, N. Gharbi, Mater. Sci. Eng. B. 139, 114 (2007). https://doi.org/10.1016/j.mseb.2006.12.011

    Article  CAS  Google Scholar 

  24. H. Ji, D. Liu, H. Cheng, C. Zhang, L. Yang, D. Ren, RSC Adv. 7, 5189 (2017). https://doi.org/10.1039/c6ra26731a

    Article  CAS  Google Scholar 

  25. K.E.J. Lehtinen, M.R. Zachariah, J. Aerosol Sci. 33, 357 (2002). https://doi.org/10.1016/S0021-8502(01)00177-X

    Article  CAS  Google Scholar 

  26. S.J. Dillon, M.P. Harmer, Mater. Sci. Forum 558–559, 1227 (2007). https://doi.org/10.4028/www.scientific.net/MSF.558-559.1227 doi

    Article  Google Scholar 

  27. B. Choudhury, A. Choudhury, Int. Nano Lett. 3, 1 (2013). https://doi.org/10.1186/2228-5326-3-55

    Article  CAS  Google Scholar 

  28. S. Sun, D. Li, C. Yang, L. Fu, D. Kong, Y. Lu, Y. Guo, D. Liu, P. Guan, Z. Zhang, J. Chen, W. Ming, L. Wang, X. Han, Phys. Rev. Lett. 128, 15701 (2022). https://doi.org/10.1103/PhysRevLett.128.015701

    Article  CAS  Google Scholar 

  29. H. Wang, D. Zhang, Y. Li, Y. Yang, J. Yang, W. Liu, M. Yue, Mater. Res. Lett. 10, 648 (2022). https://doi.org/10.1080/21663831.2022.2075712

    Article  CAS  Google Scholar 

  30. C. Zheng, X. Zhang, Z. Qiao, D. Lei, J. Solid State Chem. 159, 181 (2001). https://doi.org/10.1006/jssc.2001.9148

    Article  CAS  Google Scholar 

  31. M. Wang, J. Tian, H. Zhang, X. Shi, Z. Chen, Y. Wang, A. Ji, Y. Gao, RSC Adv. 6, 108286 (2016). https://doi.org/10.1039/c6ra20636k

    Article  CAS  Google Scholar 

  32. Y. Zhang, Mater. Sci. Pol. 34, 169 (2016). https://doi.org/10.1515/msp-2016-0023

    Article  CAS  Google Scholar 

  33. Y. Luo, M. Li, G.H. Li, Chin. J Chem Phys 27, 471 (2014). https://doi.org/10.1063/1674-0068/27/04/471-474

    Article  CAS  Google Scholar 

  34. P. Phoempoon, L. Sikong, Sci. World J. (2014). https://doi.org/10.1155/2014/841418

    Article  Google Scholar 

  35. C. Takai, M. Senna, S. Hoshino, H. Razavi-Khosroshahi, M. Fuji, RSC Adv. 8, 21306 (2018). https://doi.org/10.1039/c8ra02159g

    Article  CAS  Google Scholar 

  36. J. Cao, Y. Gu, W. Fan, L.Q. Chen, D.F. Ogletree, K. Chen, N. Tamura, M. Kunz, C. Barrett, J. Seidel, J. Wu, Nano Lett. 10, 2667 (2010). https://doi.org/10.1021/nl101457k

    Article  CAS  Google Scholar 

  37. Z. Chen, Y. Gao, L. Kang, C. Cao, S. Chen, H. Luo, J. Mater. Chem. A 2, 2718 (2014). https://doi.org/10.1039/c3ta14612j

    Article  CAS  Google Scholar 

  38. A.J. Santos, M. Escanciano, A. Suárez-Llorens, MPilar Yeste, F.M. Morales, Chem.  A Eur. J 27, 16662 (2021). https://doi.org/10.1002/chem.202102566

    Article  CAS  Google Scholar 

  39. L. Whittaker, C. Jaye, Z. Fu, D.A. Fischer, S. Banerjee, J. Am. Chem. Soc. 131, 8884 (2009). https://doi.org/10.1021/ja902054w

    Article  CAS  Google Scholar 

  40. C.L. Gomez-Heredia, J.A. Ramirez-Rincon, D. Bhardwaj, P. Rajasekar, I.J. Tadeo, J.L. Cervantes-Lopez, J. Ordonez-Miranda, O. Ares, A.M. Umarji, J. Drevillon, K. Joulain, Y. Ezzahri, J.J. Alvarado-Gil, Sci. Rep. 9, 1 (2019). https://doi.org/10.1038/s41598-019-51162-4

    Article  CAS  Google Scholar 

Download references

Acknowledgments

To Consejo Nacional de Ciencia y Tecnología from México (CONACYT), Centro de Investigación e Innovación en Materiales de Construcción as well as the technical assistance of M.S. Iris Alanis Leal and M.S. Meraly López Morales.

Funding

The presented work was supported through the projects: CONACYT-Ciencia básica No. A1-S-38327, CONACY-Infraestructura No. IT-301307 and PAICYT-UNAL No. IT1354-20. C.Y. Fragoso-Fernández thanks CONACYT for Ph.D. scholarship no. 277093.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. C. Y. Fragoso-Fernández significantly contributed to the sample preparation, acquisition and data analysis. J. R. Gonzalez-López did the data interpretation, discussion and writing of the manuscript. M. Z. Figueroa-Torres designed the investigation, drafted the manuscript, and did the data interpretation, discussion and writing. M. A. Guerra-Cossío made an important intellectual contribution to thermal properties, data analysis and interpretation. A. Toxqui-Terán coordinated thermal measurements and revised calculations. Finally, A. A. Zaldívar-Cadena helped with the discussion and writing. All authors commented on previous versions of the manuscript. All authors read and approve the final manuscript.

Corresponding author

Correspondence to M. Z. Figueroa-Torres.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fragoso-Fernández, C.Y., González-López, J.R., Guerra-Cossío, M.A. et al. Study on thermally stabilized vanadium dioxide nanoparticles solid–solid phase change thermal energy storage material. J Mater Sci: Mater Electron 33, 26580–26589 (2022). https://doi.org/10.1007/s10854-022-09334-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09334-y

Navigation