Skip to main content
Log in

Fabrication of platinum nanodendrites-modified ITO electrode for electrochemical detection of Pb (II)

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, platinum nanodendrites (PtNDs)-modified indium–tin–oxide (ITO) electrode (PtNDs/ITO) is developed for Pb(II) ions detection. PtNDs are produced by chemical reduction and drop-cast on the ITO electrode. The effect of varying PtNDs concentration (30, 50, 80,120, and 160 mg/L) to modify ITO electrodes is studied to optimize the electrochemical surface area for Pb(II) ions detection. A thin layer of Nafion is coated on top of the PtNDs/ITO-modified electrode to prevent PtNDs from leaching and enhance the mechanical robustness of the modified electrode. The properties of the as-synthesized PtNDs are characterized using X-ray diffraction (XRD) and transmission electron microscopy (TEM). The Nafion/PtNDs/ITO-modified electrodes are subjected to morphological study using field emission scanning electron microscope (FESEM) with energy-dispersive X-ray (EDX), surface analysis using X-ray photoelectron spectroscopy (XPS), and electrochemical analyses using cyclic voltammetry (CV) and differential pulse anodic stripping voltammetry (DPASV). The Nafion/PtNDs/ITO-modified electrode with optimum PtNDs concentration (120 mg/L) shows excellent electrochemical performance in detecting Pb(II) ions with a linear range of 10–100 ppb, limit of detection of 9.82 ppb, and sensitivity of 67.285 µAppb−1 cm−2. The Nafion/PtNDs/ITO-modified electrode has high specificity toward Pb(II) ions and has good reproducibility and repeatability with a relative standard deviation of 0.79% and 3.88%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. Z. Koudelkova, T. Syrovy, P. Ambrozova et al., Determination of zinc, cadmium, lead, copper and silver using a carbon paste electrode and a screen printed electrode modified with chromium(III) oxide. Sensors 17(8), 1832 (2017). https://doi.org/10.3390/s17081832

    Article  CAS  Google Scholar 

  2. L. Pujol, D. Evrard, K. Groenen-Serrano, M. Freyssinier, A. Ruffien-Cizsak, P. Gros, Electrochemical sensors and devices for heavy metals assay in water: the French groups’ contribution. Front Chem. (2014). https://doi.org/10.3389/fchem.2014.00019

    Article  Google Scholar 

  3. M. Li, H. Gou, I. Al-Ogaidi, N. Wu, Nanostructured sensors for detection of heavy metals: a review. ACS Sustain. Chem. Eng. 1(7), 713–723 (2013). https://doi.org/10.1021/sc400019a

    Article  CAS  Google Scholar 

  4. A. Inam, M. Angeli, A. Douaki, B. Shkodra, P. Lugli, L. Petti, An aptasensor based on a flexible screen-printed silver electrode for the rapid detection of chlorpyrifos. Sensors 22(7), 2754 (2022). https://doi.org/10.3390/s22072754

    Article  CAS  Google Scholar 

  5. A. Alam, D. Clyne, H. Jin, N. Hu, M. Deen, Fully integrated, simple, and low-cost electrochemical sensor array for in situ water quality monitoring. ACS Sens. 5(2), 412–422 (2020). https://doi.org/10.1021/acssensors.9b02095

    Article  CAS  Google Scholar 

  6. A. Nelson, S. Habibi, J. Lee, M. Burns, Electrochemical deposition of lead for water quality sensing. J Electrochem Soc. 169(1), 017505 (2022). https://doi.org/10.1149/1945-7111/ac4932

    Article  Google Scholar 

  7. N. Afshar-Mohajer, C. Zuidema, S. Sousan et al., Evaluation of low-cost electro-chemical sensors for environmental monitoring of ozone, nitrogen dioxide, and carbon monoxide. J Occup. Environ. Hyg. 15(2), 87–98 (2017). https://doi.org/10.1080/15459624.2017.1388918

    Article  CAS  Google Scholar 

  8. J. Hall, M. Schoenfisch, Direct electrochemical sensing of hydrogen sulfide without sulfur poisoning. Anal Chem. 90(8), 5194–5200 (2018). https://doi.org/10.1021/acs.analchem.7b05421

    Article  CAS  Google Scholar 

  9. R. Abdel-Karim, Y. Reda, A. Abdel-Fattah, Review—nanostructured materials-based nanosensors. J. Electrochem. Soc. 167(3), 037554 (2020). https://doi.org/10.1149/1945-7111/ab67aa

    Article  CAS  Google Scholar 

  10. E. Nagles, V. Arancibia, R. Ríos, Determination of lead and cadmium in the presence of quercetin-5’-sulfonic acid by adsorptive stripping voltammetry with a hanging mercury drop electrode and a nafion-coated mercury film electrode. Int. J. Electrochem. Sci. 7(5), 4545–4558 (2012)

    CAS  Google Scholar 

  11. D. Yang, L. Wang, Z. Chen, M. Megharaj, R. Naidu, Anodic stripping voltammetric determination of traces of Pb(II) and Cd(II) using a glassy carbon electrode modified with bismuth nanoparticles. Microchim. Acta 181(11–12), 1199–1206 (2014). https://doi.org/10.1007/s00604-014-1235-4

    Article  CAS  Google Scholar 

  12. C. Pérez-Ràfols, N. Serrano, J. Díaz-Cruz, C. Ariño, M. Esteban, New approaches to antimony film screen-printed electrodes using carbon-based nanomaterials substrates. Anal. Chim. Acta. 916, 17–23 (2016). https://doi.org/10.1016/j.aca.2016.03.003

    Article  CAS  Google Scholar 

  13. H. Wan, Q. Sun, H. Li, F. Sun, N. Hu, P. Wang, Screen-printed gold electrode with gold nanoparticles modification for simultaneous electrochemical determination of lead and copper. Sens. Actuators, B Chem. 209, 336–342 (2015). https://doi.org/10.1016/j.snb.2014.11.127

    Article  CAS  Google Scholar 

  14. M. Martinez Jimenez, A. Avila, A. de Barros et al., Polyethyleneimine-functionalized carbon nanotube/graphene oxide composite: a novel sensing platform for Pb(II) acetate in aqueous solution. ACS Omega 6(28), 18190–18199 (2021). https://doi.org/10.1021/acsomega.1c02085

    Article  CAS  Google Scholar 

  15. T. Nguyen, V. Cao, T. Yen Pham, L.T. Giang, Fabrication of nano flower-shaped platinum on glassy carbon electrode as a sensitive sensor for lead electrochemical analysis. Electroanalysis 31(12), 2538–2545 (2019). https://doi.org/10.1002/elan.201900021

    Article  CAS  Google Scholar 

  16. P. Asharani, Y. Lianwu, Z. Gong, S. Valiyaveettil, Comparison of the toxicity of silver, gold and platinum nanoparticles in developing zebrafish embryos. Nanotoxicology 5(1), 43–54 (2010). https://doi.org/10.3109/17435390.2010.489207

    Article  CAS  Google Scholar 

  17. N. Mehra, A. Jain, N. Lodhi, R. Raj, V. Dubey, D. Mishra, M. Nahar, N. Jain, Challenges in the use of carbon nanotubes for biomedical applications. Crit. Rev. Ther. Drug Carrier Syst. 25(2), 169–206 (2008)

    Article  CAS  Google Scholar 

  18. D. Han, Z. Liu, J. Liu, X. Huang, The size effect of Pt nanoparticles: a new route to improve sensitivity in electrochemical detection of As(iii). RSC Adv. 5(48), 38290–38297 (2015)

    Article  CAS  Google Scholar 

  19. S. Ozkan, J. Kauffmann, P. Zuman, Electroanalysis in biomedical and pharmaceutical sciences. Monographs in electrochemistry (Springer, Berlin, 2015)

    Google Scholar 

  20. E. Sayyah, M. Shaban, M. Rabia, A sensor of m-cresol nanopolymer/Pt-electrode film for detection of lead ions by potentiometric methods. Adv. Polym. Technol. 37(5), 1296–1304 (2016)

    Article  Google Scholar 

  21. H. Xu, L. Zeng, S. Xing, G. Shi, J. Chen, Y. Xian, L. Jin, Highly ordered platinum-nanotube arrays for oxidative determination of trace arsenic(III). Electrochem. Commun. 10(12), 1893–1896 (2008)

    Article  CAS  Google Scholar 

  22. L. Wang, H. Wang, Y. Nemoto, Y. Yamauchi, Rapid and efficient synthesis of platinum nanodendrites with high surface area by chemical reduction with formic acid. Chem. Mater. 22(9), 2835–2841 (2010)

    Article  CAS  Google Scholar 

  23. S. Frutos-Puerto, C. Miró, E. Pinilla-Gil, Nafion-protected sputtered-bismuth screen-printed electrode for on-site voltammetric measurements of Cd(II) and Pb(II) in natural water samples. Sensors 19(2), 279 (2019)

    Article  Google Scholar 

  24. B. Kang, B. Park, T. Ha, Highly sensitive wearable glucose sensor systems based on functionalized single-wall carbon nanotubes with glucose oxidase-nafion composites. Appl. Surf. Sci. 470, 13–18 (2019)

    Article  CAS  Google Scholar 

  25. A. Olejnik, J. Karczewski, A. Dołęga, K. Siuzdak, K. Grochowska, Novel approach to interference analysis of glucose sensing materials coated with Nafion. Bioelectrochemistry 135, 107575 (2020)

    Article  CAS  Google Scholar 

  26. M. Shamsipur, Z. Karimi, M. Amouzadeh Tabrizi, S. Rostamnia, Highly sensitive non-enzymatic electrochemical glucose sensor by Nafion/SBA-15-Cu (II) modified glassy carbon electrode. J. Electroanal. Chem. 799, 406–412 (2017)

    Article  CAS  Google Scholar 

  27. K. Abdul Razak, S. Neoh, N. Ridhuan, N. Mohamad Nor, Effect of platinum-nanodendrite modification on the glucose-sensing properties of a zinc-oxide-nanorod electrode. Appl. Surface Sci. 380, 32–39 (2016)

    Article  CAS  Google Scholar 

  28. M.B. Ismail, N.C. Pastor, A comparative study on surface treatments in the immobilization improvement of hexahistidine-tagged protein on the indium tin oxide surface. J. Nanomed. Nanotechnol. (2016). https://doi.org/10.4172/2157-7439.1000372

    Article  Google Scholar 

  29. Sharma, R., Bisen, D. P., Shukla, U., & Sharma, B. G.. X-ray diffraction: a powerful method of characterizing nanomaterials. Recent Research in Science and Technology, 2012, 4(8). Retrieved from https://updatepublishing.com/journal/index.php/rrst/article/view/933

  30. Scherrer, P. and P. Debye, Determination of the Size and Internal Structure of Colloidal Particles using X-Rays. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1918. 2.

  31. J.I. Langford, A.J.C. Wilson, Scherrer after sixty years: A survey and some new results in the determination of crystallite size. J. Appl. Cryst. 11, 102–113 (1978). https://doi.org/10.1107/S0021889878012844

    Article  CAS  Google Scholar 

  32. Uvarov, V. and Popov, I., Metrological characterization of X-ray diffraction methods at different acquisition geometries for determination of crystallite size in nano-scale materials 2022.

  33. X. Zhang, M. Wang, M. Li, M. Zhang, C. Zhang, Fabrication of Macroporous Nafion membrane from silica crystal for ionic polymer-metal composite actuator. Processes. 8(11), 1389 (2020). https://doi.org/10.3390/pr8111389

    Article  CAS  Google Scholar 

  34. Chen, K., Lee, C., Rick, J., Wang, S., Liu, C. and Hwang, B.,. Fabrication and application of amperometric glucose biosensor based on a novel PtPd bimetallic nanoparticle decorated multi-walled carbon nanotube catalyst 2022.

  35. A. Szoke, Z. Zsebe, G. Turdean, L. Muresan, Composite electrode material based on electrochemically reduced graphene oxide and gold nanoparticles for electrocatalytic detection of ascorbic acid. Electrocatalysis 10(5), 573–583 (2019). https://doi.org/10.1007/s12678-019-00543-4

    Article  CAS  Google Scholar 

  36. P. Kanyong, S. Rawlinson, J. Davis, Gold nanoparticle modified screen-printed carbon arrays for the simultaneous electrochemical analysis of lead and copper in tap water. Microchim. Acta 183(8), 2361–2368 (2016)

    Article  CAS  Google Scholar 

  37. A. Mohanty, N. Garg, R. Jin, A universal approach to the synthesis of noble metal nanodendrites and their catalytic properties. Angewandte Chemie - International Edition 49(29), 4962–4966 (2010)

    Article  CAS  Google Scholar 

  38. N.F. Atta, A. Galal, S.M. Azab, Determination of morphine at gold nanoparticles/Nafion® carbon paste modified sensor electrode. Analyst 136(22), 4682–4691 (2011)

    Article  CAS  Google Scholar 

  39. N. Yusoff, Graphene-polymer modified electrochemical sensors. graphene-based electrochemical sensors for biomolecules, in A volume in micro and nano technologies. (Elsevier, Amsterdam, 2018), pp.155–186

    Google Scholar 

  40. H. Toh, C. Batchelor-McAuley, K. Tschulik, M. Uhlemann, A. Crossley, R. Compton, The anodic stripping voltammetry of nanoparticles: electrochemical evidence for the surface agglomeration of silver nanoparticles. Nanoscale 5(11), 4884 (2013). https://doi.org/10.1039/c3nr00898c

    Article  CAS  Google Scholar 

  41. M.P. Ngoc Bui, C.A. Li, K.N. Han, X.H. Pham, G.H. Seong, Simultaneous detection of ultratrace lead and copper with gold nanoparticles patterned on carbon nanotube thin film. Analyst 137(8), 1888–1894 (2012). https://doi.org/10.1039/C2AN16020J

    Article  Google Scholar 

  42. M.F. Al-Hakkani, A rapid, developed and validated RP-HPLC method for determination of azithromycin. SN Applied Sciences 1(3), 1–8 (2019)

    Article  CAS  Google Scholar 

  43. T.B.G. Lopez, S.T. Palisoc, M.T. Natividad, Highly sensitive [Ru(bpy)3]2 +/Nafion® modified indium tin oxide-based sensor for heavy metal detection. Sensing Bio-Sensing Res. 15(July), 34–40 (2017)

    Article  Google Scholar 

  44. S.T. Palisoc et al., Determination of lead (Pb2+) by anodic stripping voltammetry based on [Ru(NH3)6]3+/nafion modified electrodes. J. New Mater. Electrochem. Syst. 17(4), 205–208 (2014)

    Article  CAS  Google Scholar 

  45. S.T. Palisoc et al., Spin coated hexaammineruthenium(III)/Nafion/ITO electrodes for the determination of lead(II) and Cadmium(II) via anodic stripping voltammetry. J. New Mater. Electrochem. Syst. 20(2), 077–082 (2017)

    Article  CAS  Google Scholar 

  46. Y. Sayato, WHO guidelines for drinking-water quality. Eisei Kagaku 35(5), 307–312 (1989)

    Article  Google Scholar 

  47. S. Duan et al., Nanostructure optimization of platinum-based nanomaterials for catalytic applications. Nanomaterials 8(11), 949 (2018)

    Article  Google Scholar 

  48. A.N. Hoang, Role of Br- on the formation of a bismuth nanodendrite structure and its use as an electrochemical sensor for heavy metal detection. Int. J. Electrochem. Sci. (2020). https://doi.org/10.20964/2020.06.45

    Article  Google Scholar 

  49. Tyler, G., ICP Optical Emission Specroscopy Technical Note 05: ICP-OES , ICP-MS and AAS Techniques Compared. Horiba group, 2012(ICP Optical emisssion Spectroscopy Technical Note 05): p. 1–11.

  50. M.F. Ahmed et al., Investigating the status of cadmium, chromium and lead in the drinking water supply chain to ensure drinking water quality in malaysia. Water (Switzerland) 12(10), 1–26 (2020)

    Google Scholar 

Download references

Funding

The authors acknowledge the financial support from Ministry of Higher Education Malaysia, Fundamental Research Grant Scheme (Grant No. FRGS/1/2020/T K0/USM/01/1).

Author information

Authors and Affiliations

Authors

Contributions

All authors have helped in research design, data collection, writing and improving the overall quality of the manuscript.

Corresponding authors

Correspondence to Noorhashimah Mohamad Nor or Khairunisak Abdul Razak.

Ethics declarations

Competing interest

The authors declare that they have no conflict of interest, financial interests or personal relationship that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramli, N.H., Mohamad Nor, N., Zakaria, N.D. et al. Fabrication of platinum nanodendrites-modified ITO electrode for electrochemical detection of Pb (II). J Mater Sci: Mater Electron 33, 26564–26579 (2022). https://doi.org/10.1007/s10854-022-09333-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09333-z

Navigation