Skip to main content
Log in

Effect of hydration on microstructure and microwave dielectric properties of CaSmAlO4-based ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ca1.15Sm0.85Al0.85Ti0.15O4 ceramics with different ball milling temperatures were prepared by the solid-phase method. The X-ray diffraction results showed that the high ball milling temperature (45 ± 5 °C) led to the hydration of the material phase, resulting in the formation of a large amount of (CaO)3Al2O3(H2O)6 phase. The results of the scanning electronic microscope and the energy dispersive spectroscopy confirmed that the hydrated powders resulted in heterogeneous microstructure characteristics with a wide grain size distribution of ceramics sintered, which degraded dielectric characteristics, especially reducing the quality factor (around 30,000). However, controlling the ball mill temperature in the range of 20 ± 5 °C, there was no hydration occurring in the slurry. Thus, the sintered ceramics at optimum temperature exhibited excellent microwave dielectric properties, a dielectric constant of around 19.6, a high-quality factor of 70,000 GHz, and a near zero temperature coefficient (< ± 4 ppm/°C) of resonant frequency in a wide temperature range from − 40 to 125 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

No data was used for the research described in the article.

References

  1. M.T. Sebastian, H. Jantunen, R. Ubic, Other important materials. Microwave Mater. Appl. 2, 267–344 (2015)

    Google Scholar 

  2. H.C. Yang, S.R. Zhang, H.Y. Yang, Q.Y. Wen, Q. Yang, L. Gui et al., The latest process and challenges of microwave dielectric ceramics based on pseudo phase diagrams. J. Adv. Ceram. 10(5), 885–932 (2021)

    Article  CAS  Google Scholar 

  3. W.P. Aleksandra, B. Izabela, W. Angelika, O. Agnieszka, M. Waldemar, W. Piotr et al., Synthesis and characterization of low loss dielectric ceramics prepared from composite of titanate nanosheets with barium ions. J. Nanomater. 2017, 1–9 (2017)

    Google Scholar 

  4. X.C. Fan, X.M. Chen, Effects of Ca/Ti cosubstitution upon microwave dielectric characteristics of CaSmAlO4 ceramics. J. Am. Ceram. Soc. 92(2), 433–438 (2009)

    Article  CAS  Google Scholar 

  5. W.S. Kim, E.S. Kim, K.H. Yoon, Effects of Sm3+ substitution on dielectric properties of Ca1−xSm2x/3TiO3 ceramics at microwave frequencies. J. Am. Ceram. Soc. 82(8), 2111–2115 (1999)

    Article  CAS  Google Scholar 

  6. R.C. Kell, A.C. Greenham, G.C.E. Olds, High-permittivity temperature-stable ceramic dielectrics with low microwave loss. J. Am. Ceram. Soc. 56(7), 352–354 (1973)

    Article  CAS  Google Scholar 

  7. M.T. Sebastian, K.P. Surendran, Tailoring the microwave dielectric properties of Ba(Mg1/3Ta2/3)O3 ceramics. J. Eur. Ceram. Soc. 26(10–11), 1791–1799 (2006)

    Article  CAS  Google Scholar 

  8. F. Liu, L.J. Cheng, H. Li, S.J. Liu, Ordering-induced domains in sub-micron-sized Ba (Zn1/3Ta2/3) O3–BaZrO3 microwave ceramics. J. Mater. Sci. Mater. Electron. 32(21), 26126–26136 (2021)

    Article  CAS  Google Scholar 

  9. Y. Yu, Y.J. Wang, W.J. Guo, C.Q. Zhu, A. Ji, H. Wu et al., Grain size engineered 0.95 MgTiO3–0.05 CaTiO3 ceramics with excellent microwave dielectric properties and prominent mechanical performance. J. Am. Ceram. Soc. 105(1), 299–307 (2022)

    Article  CAS  Google Scholar 

  10. C.S. Hsu, C.L. Huang, K.H. Chiang, Microwave dielectric properties of B2O3 doped LaAlO3 ceramics at low sintering temperature. J. Mater. Sci. 38(16), 3495–3500 (2003)

    Article  CAS  Google Scholar 

  11. X.K. Liu, L. He, M.X. Yu, R.Z. Zuo, Temperature-stable and ultralow-loss (1–x) CaSmAlO4–xSr2TiO4 microwave dielectric solid-solution ceramics. J. Mater. Sci. 56(23), 13190–13197 (2021)

    Article  CAS  Google Scholar 

  12. X.Q. Liu, X.M. Chen, Y. Xiao, Preparation and characterization of LaSrAlO4 microwave dielectric ceramics. Mater. Sci. Eng.: B. 103(3), 276–280 (2003)

    Article  Google Scholar 

  13. Y. Xiao, X.M. Chen, X.Q. Liu, Microstructures and microwave dielectric characteristics of CaRAlO4 (R= Nd, Sm, Y) ceramics with tetragonal K2NiF4 structure. J. Am. Ceram. Soc. 87(11), 2143–2146 (2004)

    Article  CAS  Google Scholar 

  14. I.M. Reaney, D. Iddles, Microwave dielectric ceramics for resonators and filters in mobile phone networks. J. Am. Ceram. Soc. 89(7), 2063–2072 (2006)

    CAS  Google Scholar 

  15. D. Cruickshank, 1–2 GHz dielectrics and ferrites: overview and perspectives. J. Eur. Ceram. Soc. 23(14), 2721–2726 (2003)

    Article  CAS  Google Scholar 

  16. X.C. Fan, M.M. Mao, X.M. Chen, Microstructures and microwave dielectric properties of the CaSmAlO4-based ceramics. J. Am. Ceram. Soc. 91(9), 2917–2922 (2008)

    Article  CAS  Google Scholar 

  17. S. He, K.G. Wang, X.J. Zhou, S. Hu, X.W. Luan, S.C. Zhou et al., Microwave dielectric properties of Ca1.15Sm0.85Al0.85Ti015O4 ceramics prepared by reaction sintering. Ceram. Int. 47(11), 15580–15584 (2021)

    Article  CAS  Google Scholar 

  18. F. Lichtenberg, A. Herrnberger, K. Wiedenmann, Synthesis, structural, magnetic and transport properties of layered perovskite-related titanates, niobates and tantalates of the type AnBnO3n+ 2, A′ Ak−1BkO3k+1 and AmBm−1O3m. Prog. Solid State Chem. 36(4), 253–387 (2008)

    Article  CAS  Google Scholar 

  19. S.N. Ruddlesden, P. Popper, The compound Sr3Ti2O7 and its structure. Acta Crystallogr. 11(1), 54–55 (1958)

    Article  CAS  Google Scholar 

  20. Y.L. Liu, J.R. Liu, Q. Sun, D.W. Wang, K.R. Adair, J.N. Liang et al., Insight into the microstructure and ionic conductivity of cold sintered NASICON solid electrolyte for solid-state batteries. ACS Appl. Mater. Interfaces 11(31), 27890–27896 (2019)

    Article  CAS  Google Scholar 

  21. Y.L. Liu, Q. Sun, D.W. Wang, K. Adair, J.N. Liang, X.L. Sun, Development of the cold sintering process and its application in solid-state lithium batteries. J. Power Sourc. 393, 193–203 (2018)

    Article  CAS  Google Scholar 

  22. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. 32(5), 751–767 (1976)

    Article  Google Scholar 

  23. A.K. Chatterjee, G.I. Zhmoidin, The phase equilibrium diagram of the system CaO-Al2O3-CaF2. J. Mater. Sci. 7(1), 93–97 (1972)

    Article  CAS  Google Scholar 

  24. S.H. Lei, H.Q. Fan, X.H. Ren, J.W. Fan, L.T. Ma, H.L. Tian, Microstructure, phase evolution and interfacial effects in a new Zn0.9Mg0.1TiO3-ZnNb2O6 ceramic system with greatly induced improvement in microwave dielectric properties. Scr. Mater. 146, 154–159 (2018)

    Article  CAS  Google Scholar 

  25. Q.H. Yang, T. Luo, T. Yu, H.T. Yu, J.S. Liu, Improvement of microwave dielectric properties of Ba2Ti9O20 ceramics using [Zn1/3Nb2/3]4+ substitution for Ti4+. J. Mater. Sci. Mater. Electron. 31(18), 15184–15191 (2020)

    Article  CAS  Google Scholar 

  26. B. Tang, Q.Y. Xiang, Z.X. Fang, X. Zhang, Z. Xiong, H. Li et al., Influence of Cr3+ substitution for Mg2+ on the crystal structure and microwave dielectric properties of CaMg1-xCr2x/3Si2O6 ceramics. Ceram. Int. 45(9), 11484–11490 (2019)

    Article  CAS  Google Scholar 

  27. M. Xiao, Q.Q. Gu, Z.Q. Zhou, P. Zhang, Study of the microwave dielectric properties of (La1−xSmx) NbO4 (x= 0–0.10) ceramics via bond valence and packing fraction. J. Am. Ceram. Soc. 100(9), 3952–3960 (2017)

    Article  CAS  Google Scholar 

  28. J. Iqbal, H.X. Liu, H. Hao, A. Ullah, M.H. Cao, Z.H. Yao, Phase, microstructure, and microwave dielectric properties of a new ceramic system:(1–x)Mg(Ti0.95Sn0.05)O3–xCaTiO3. Ceram. Int. 43(16), 14156–14160 (2017)

    Article  CAS  Google Scholar 

  29. R.D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 73(1), 348–366 (1993)

    Article  CAS  Google Scholar 

  30. J. Guo, D. Zhou, S.L. Zou, H. Wang, L.X. Pang, X. Yao, Microwave dielectric ceramics Li2MO4−TiO2(M= Mo, W) with low sintering temperatures. J. Am. Ceram. Soc. 97(6), 1819–1822 (2014)

    Article  CAS  Google Scholar 

  31. J. Zhang, Y. Luo, Z.X. Yue, L.T. Li, Temperature stability, low loss and defect relaxation of MgO–TiO2 microwave dielectric ceramics modified by Ca0.8Sr0.2TiO3. Ceram. Int. 44(1), 141–145 (2018)

    Article  CAS  Google Scholar 

  32. C. Zhang, R.Z. Zuo, J. Zhang, Y. Wang, Structure-dependent microwave dielectric properties and middle-temperature sintering of forsterite (Mg1–xNix)2SiO4 ceramics. J. Am. Ceram. Soc. 98(3), 702–710 (2015)

    Article  CAS  Google Scholar 

  33. S.J. Penn, N.M. Alford, A. Templeton, X.R. Wang, M.S. Xu, M. Reece et al., Effect of porosity and grain size on the microwave dielectric properties of sintered alumina. J. Am. Ceram. Soc. 80(7), 1885–1888 (1997)

    Article  CAS  Google Scholar 

  34. A. Templeton, X.R. Wang, S.J. Penn, S.J. Webb, L.F. Cohen, N.M. Alford, Microwave dielectric loss of titanium oxide. J. Am. Ceram. Soc. 83(1), 95–100 (2000)

    Article  CAS  Google Scholar 

  35. M.J. Wu, Crystal structure and microwave dielectric characteristics of Zr-substituted Ni0.5Ti0.5NbO4 ceramics. Funct. Mater. Lett. 1, 1–4 (2015)

    Google Scholar 

  36. Z.Y. Zhang, H.K. Zhu, Y. Zhang, Y.H. Chen, Z.X. Fu, K. Huang et al., Effects of the Ba3(VO4)2 additions on microwave dielectric properties of (Zr0.8Sn0.2)TiO4 ceramics. J. Mater. Sci. Mater. Electron. 28(2), 2044–2048 (2017)

    Article  CAS  Google Scholar 

  37. W. Lei, W.Z. Lu, X.C. Wang, Temperature compensating ZnAl2O4–Co2TiO4 spinel-based low-permittivity microwave dielectric ceramics. Ceram. Int. 38(1), 99–103 (2012)

    Article  CAS  Google Scholar 

  38. S.Y. Cho, I.T. Kim, K.S. Hong, Microwave dielectric properties and applications of rare-earth aluminates. J. Mater. Res. 14(1), 114–119 (1999)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from Suzhou Boom High Purity Materials Technology Co., Ltd and Sichuan Mianyang Weiqi Electronic Technology Co., Ltd.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study concept and design. Material preparation, data collection and analysis were carried out by HF, HJ and TY. The first draft of the manuscript was written by HF. The study was supervised by HY. All the authors have commented on previous versions of the manuscript. Final draft read and approved by all authors.

Corresponding author

Correspondence to Hongtao Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, H., Jing, H., Yu, T. et al. Effect of hydration on microstructure and microwave dielectric properties of CaSmAlO4-based ceramics. J Mater Sci: Mater Electron 33, 26135–26143 (2022). https://doi.org/10.1007/s10854-022-09300-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09300-8

Navigation