Skip to main content

Advertisement

Log in

Modified solution combustion-grown Zn-doped Ni–Mg ferrite nanostructures for room temperature NH3 sensing

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Resistive-based gas sensors have been examined as the most favourable gas sensors for toxic gases and volatile organic compounds owing to their low cost, ease of use, high stability and simple structure. In this work, ammonia gas sensing self-assembled nanostructure material Ni0.5ZnxMg0.5−xFe2O4 (x = 0.00, 0.15, 0.30, 0.45) were successfully synthesized by the modified solution combustion method and examined for the structural, morphological, dielectric and gas sensing properties by X-ray diffraction, field emission scanning electron microscopy, impedance analyzer and the gas sensing setup. The dielectric properties were enhanced by Zn2+ doping. The ammonia vapour sensor based on Ni0.5ZnxMg0.5−xFe2O4 (x = 0.00, 0.15, 0.30, 0.45) shows interesting p-type behaviour gas sensing characteristics at the operational temperature of 300 K. The response to 50 ppm ammonia is 576%, 538%, 423% and 467% for x = 0.00, 0.15, 0.30, 0.45 compositions of Ni0.5ZnxMg0.5−xFe2O4 respectively while as the response and recovery time for all compositions, is in the range of 50–58 s and 64–83 s respectively. Moreover, the ammonia (reducing gas) gas sensing mechanism is also presented. The observed interesting results like sensor response and selectivity propose that the self-assembled Ni0.5ZnxMg0.5−xFe2O4 can be assuredly applied in ammonia vapour detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

All data generated or analyzed during the present study are included in this manuscript [No supplementary files].

References

  1. G. Korotcenkov, Metal oxides for solid-state gas sensors: what determines our choice? Mater. Sci. Eng. B 139(1), 1–23 (2007). https://doi.org/10.1016/j.mseb.2007.01.044

    Article  CAS  Google Scholar 

  2. R. Nasr Azadani, M. Sabbagh, H. Salehi, A. Cheshmi, A. Raza, B. Kumari, G. Erabi, Sol-gel: uncomplicated, routine and affordable synthesis procedure for utilization of composites in drug delivery: review. J. Compos. Compd. 3(6), 57–70 (2021). https://doi.org/10.52547/jcc.3.1.6

    Article  Google Scholar 

  3. F. Niazvand, P.R. Wagh, E. Khazraei, M. Borzouyan Dastjerdi, C. Patil, I.A. Najar, Application of carbon allotropes composites for targeted cancer therapy drugs: a review. J. Compos. Compd. 3(7), 140–151 (2021). https://doi.org/10.52547/jcc.3.2.7

    Article  Google Scholar 

  4. Z. Shariatinia, Carboxymethyl chitosan: properties and biomedical applications. Int. J. Biol. Macromol. 120(Pt B), 1406–1419 (2018). https://doi.org/10.1016/j.ijbiomac.2018.09.131

    Article  CAS  Google Scholar 

  5. B. Fonseca-santos, M. Chorilli, An overview of carboxymethyl derivatives of chitosan: their use as biomaterials and drug delivery systems. Mater. Sci. Eng.: C 77(2017), 1349–1362 (2017). https://doi.org/10.1016/j.msec.2017.03.198

    Article  CAS  Google Scholar 

  6. A. Khan, K.A. Alamry, Recent advances of emerging green chitosan-based biomaterials with potential biomedical applications: a review. Carbohydr. Res. 506, 108368 (2021). https://doi.org/10.1016/j.carres.2021.10836

    Article  CAS  Google Scholar 

  7. S. Zhang, B. Cheng, Z. Jia, Z. Zhao, X. Jin, Z. Zhao, G. Wu, The art of framework construction: hollow-structured materials toward high-efficiency electromagnetic wave absorption. Adv. Compos. Hybrid Mater. (2022). https://doi.org/10.1007/s42114-022-00514-2

    Article  Google Scholar 

  8. H.W. Jang, A. Zareidoost, M. Moradi, A. Abuchenari, A. Bakhtiari, R. Pouriamanesh, B. Malekpouri, A.J. Rad, D. Rahban, Photosensitive nanocomposites: environmental and biological applications. J. Compos. Compd. 2(2), 50–60 (2020). https://doi.org/10.29252/jcc.2.1.7

    Article  Google Scholar 

  9. M. Qayoom, K.A. Shah, A.H. Pandit et al., Dielectric and electrical studies on iron oxide (α-Fe2O3) nanoparticles synthesized by modified solution combustion reaction for microwave applications. J. Electroceram. 45, 7–14 (2020). https://doi.org/10.1007/s10832-020-00219-2

    Article  CAS  Google Scholar 

  10. J. Daraei, Production and characterization of PCL (polycaprolactone) coated TCP/nanoBG composite scaffolds by sponge foam method for orthopedic applications. J. Compos. Compd. 2(2), 44–49 (2020). https://doi.org/10.29252/jcc.2.1.6

    Article  Google Scholar 

  11. M.A. Ahmed, E. Ateia, S. El-Dek, Rare earth doping effect on the structural and electrical properties of Mg–Ti ferrite. Mater. Lett. 57, 4256–4266 (2003). https://doi.org/10.1016/S0167-577X(03)00300-8

    Article  CAS  Google Scholar 

  12. T. Meaz, S. Attia, A. Ata, Effect of tetravalent titanium ions substitution on the dielectric properties of Co–Zn ferrites. J. Magn. Magn. Mater. 257, 296–305 (2003). https://doi.org/10.1016/S0304-8853(02)01212-X

    Article  CAS  Google Scholar 

  13. R.S. Yadav, I. Kuřitka, J. Vilcakova, J. Havlica, L. Kalina, P. Urbánek, M. Machovsky, M. Masař, M. Holek, Influence of La3+ on structural, magnetic, dielectric, and electrical and modulus spectroscopic characteristics of single phase CoFe2−xLaxO4 nanoparticles. J. Mater. Sci.: Mater. Electron. 28, 9139–9154 (2017). https://doi.org/10.1007/s10854-017-6648-5

    Article  CAS  Google Scholar 

  14. B.P. Jacob, S. Thankachan, S. Xavier, E.M. Mohammed, Effect of Tb3+ substitution on structural, electrical and magnetic properties of sol–gel synthesized nanocrystalline nickel ferrite. J. Alloys Compd. 578, 314–319 (2013)

    Article  CAS  Google Scholar 

  15. V.A. Adole, T.B. Pawar, P.B. Koli, B.S. Jagdale, Exploration of catalytic performance of nano-La2O3 as an efficient catalyst for dihydropyrimidinone/thione synthesis and gas sensing. J. Nanostruct. Chem. 9, 61–76 (2019). https://doi.org/10.1007/s40097-019-0298-5

    Article  CAS  Google Scholar 

  16. P. Rao, R.V. Godbole, S. Bhagwat, Nanocrystalline Pd:NiFe2O4 thin films: a selective ethanol gas sensor. J. Magn. Magn. Mater. (2016). https://doi.org/10.1016/j.jmmm.2016.05.021

    Article  Google Scholar 

  17. A. Sutka, G. Mezinskis, A. Lusis, M. Stingaciu, Gas sensing properties of Zn-doped p-type nickel ferrite. Sens. Actuators B 171–172, 354–360 (2012). https://doi.org/10.1016/j.snb.2012.04.059

    Article  CAS  Google Scholar 

  18. M.A. Amer, M. El Hiti, Mössbauer and X-ray studies for Ni0.2ZnxMg0.8−xFe2O4 ferrites. J. Magn. Magn. Mater. 234, 118 (2001)

    Article  CAS  Google Scholar 

  19. D. Maity, K. Rajavel, R.T. Kumar, Polyvinyl alcohol wrapped multiwall carbon nanotube (MWCNTs) network on fabrics for wearable room temperature ethanol sensor. Sens. Actuators B 261, 297–306 (2018). https://doi.org/10.1016/j.snb.2018.01.152

    Article  CAS  Google Scholar 

  20. S. Pishar et al., Effect of synthesis method and morphology on the enhanced CO2 sensing properties of magnesium ferrite MgFe2O4. Ceram. Int. 44(15), 18578–18584 (2018). https://doi.org/10.1016/j.ceramint.2018.07.082

    Article  CAS  Google Scholar 

  21. M.N. Akhtar, A. Rahman, A.B. Sulong, M.A. Khan, Structural, spectral, dielectric and magnetic properties of Ni0.5MgxZn0.5xFe2O4 nanosized ferrites for microwave absorption and high frequency applications. Ceram. Int. 43(2016), 4357–4365 (2016)

    Google Scholar 

  22. F.A. Hezam, N.O. Khalifa, O. Nur, M.A. Mustafa, Synthesis and magnetic properties of Ni0.5MgxZn0.5xFe2O4 (0.0 ≤ x ≤ 0.5) nanocrystalline spinel ferrites. Mater. Chem. Phys. (2020). https://doi.org/10.1016/j.matchemphys.2020.123770

    Article  Google Scholar 

  23. M. Qayoom, G.N. Dar, Crystallite size and compressive lattice strain in NiFe2O4 nanoparticles as calculated in terms of various models: influence of annealing temperature. Int. J. Self-Propag. High-Temp. Synth. 29, 213–219 (2020). https://doi.org/10.3103/S1061386220040111

    Article  CAS  Google Scholar 

  24. P. Bindu, S. Thomas, Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. J. Theor. Appl. Phys. 8, 123–134 (2014). https://doi.org/10.1007/s40094-014-0141-9

    Article  Google Scholar 

  25. X. Wang, M. Qin, F. Fang, B. Jia, H. Wu, X. Qu, A.A. Volinsky, Solution combustion synthesis of nanostructured iron oxides with controllable morphology, composition and electrochemical performance. Ceram. Int. (2017). https://doi.org/10.1016/j.ceramint.2017.12.004

    Article  Google Scholar 

  26. R. Bhat, M. Qayoom, G.N. Dar, B. Want, Structural, dielectric, optical and magnetic studies of dysprosium doped iron oxide nanostructures. Mater. Chem. Phys. 245, 122764 (2020). https://doi.org/10.1016/j.matchemphys.2020.122764

    Article  CAS  Google Scholar 

  27. M. Qayoom, R. Bhat, K. Asokan, M.A. Shah, G.N. Dar, Unary doping effect of A2+ (A = Zn Co, Ni) on the structural, electrical and magnetic properties of substituted iron oxide nanostructures. J. Mater. Sci.: Mater. Electron. 31, 8268–8282 (2020). https://doi.org/10.1007/s10854-020-03362-2

    Article  CAS  Google Scholar 

  28. E.E. Ateia, G. Abdelatif, M.A. Ahmed, M. Mahmoud, Effect of different Gd3+ ion content on the electric and magnetic properties of lithium antimony ferrite. J. Inorg. Organomet. Polym. 26, 81–90 (2016). https://doi.org/10.1007/s10904-015-0283-5

    Article  CAS  Google Scholar 

  29. C.C. Naik, S.K. Gaonkar, I. Furtado, A.V. Salker, Effect of Cu2+ substitution on structural, magnetic and dielectric properties of cobalt ferrite with its enhanced antimicrobial property. J. Mater. Sci.: Mater. Electron. 29, 14746–14761 (2018). https://doi.org/10.1007/s10854-018-9611-1

    Article  CAS  Google Scholar 

  30. M.H. Dhaou, S. Hcini, A. Mallah, M.L. Bouazizi, A. Jemni, Structural and complex impedance spectroscopic studies of ferrite nanoparticle. Appl. Phys. A (2016). https://doi.org/10.1007/s00339-016-0652-0

    Article  Google Scholar 

  31. Y.D. Kolekar, L.J. Sanchez, C.V. Ramana, Dielectric relaxations and alternating current conductivity in manganese substituted cobalt ferrite. J. Appl. Phys. 115, 144106–144116 (2014). https://doi.org/10.1063/1.4870232

    Article  CAS  Google Scholar 

  32. C. Rayssi, S.E. Kossi, J. Dhahri, K. Khirouni, Frequency and temperature-dependence of dielectric permittivity and electric modulus studies of the solid solution Ca0.85Er0.1Ti1−xCo4x/3O3 (0 ≤ x ≤ 0.1). RSC Adv. (2018). https://doi.org/10.1039/C8RA00794B

    Article  Google Scholar 

  33. P.P. Subha, M.K. Jayaraj, Enhanced room temperature gas sensing properties of low temperature solution processed ZnO/CuO heterojunction. BMC Chem. 13, 4 (2019). https://doi.org/10.1186/s13065-019-0519-5

    Article  CAS  Google Scholar 

  34. M. Qayoom, K.A. Shah, A. Firdous, G.N. Dar, Synthesis of sodium acetate oriented Ni(II)-doped iron oxide nanospheres for efficient acetone gas sensing. Sens. Int. 3(2022), 100150 (2022). https://doi.org/10.1016/j.sintl.2021.100150

    Article  Google Scholar 

  35. S.G. Gawas, V.M. Verenkar, Selective sensing of oxidizing gases on Co–Ni–Zn ferrite: mechanism and response characteristics. Mater. Sci. Eng. B 265, 114948 (2021). https://doi.org/10.1016/j.mseb.2020.114948

    Article  CAS  Google Scholar 

  36. S.D. Raut, V.V. Awasarmol, B.G. Ghule, S.F. Shaikh, S.K. Gore, R.P. Sharma, P.P. Pawar, R.S. Mane, Enhancement in room-temperature ammonia sensor activity of size-reduced cobalt ferrite nanoparticles on γ-irradiation. Mater. Res. Express (2018). https://doi.org/10.1088/2053-1591/aac99d

    Article  Google Scholar 

  37. R. Kashyap, R. Kumar, S. Devi, M. Kumar, S. Tyagi, D. Kumar, Ammonia gas sensing performance of nickel ferrite nanoparticles. Mater. Res. Express (2019). https://doi.org/10.1088/2053-1591/ab55b5

    Article  Google Scholar 

  38. U.B. Tumberphale, S.S. Jadhav, S.D. Raut, P.V. Shinde, S. Sangle, S.F. Shaikh, A.M. Al-Enizi, M. Ubaidullah, R.S. Mane, S.K. Gore, Tailoring ammonia gas sensing performance of La3+-doped copper cadmium ferrite nanostructures. Solid State Sci. (2019). https://doi.org/10.1016/j.solidstatesciences.2019.106089

    Article  Google Scholar 

  39. P.B. Koli, K.H. Kapadnis, U.G. Deshpande, Nano-crystalline modified nickel ferrite films: an effective sensor for industrial and environmental gas pollutant detection. J. Nanostruct. Chem. (2019). https://doi.org/10.1007/s40097-019-0300-2

    Article  Google Scholar 

  40. R.R. Powar, V.D. Phadtare, V.G. Parale, S. Pathak, K.R. Sanadi, H.H. Park, D.R. Patil, P.B. Piste, D.N. Zambare, Effect of zinc substitution on magnesium ferrite nanoparticles: structural, electrical, magnetic, and gas-sensing properties. Mater. Sci. Eng. B 262, 114776 (2020). https://doi.org/10.1016/j.mseb.2020.114776

    Article  CAS  Google Scholar 

  41. D. Deivatamil, J.A. Mark, T. Raghavan, J.P. Jesuraj, Fabrication of MnFe2O4 and Ni:MnFe2O4 nanoparticles for ammonia gas sensor application. Inorg. Chem. Commun. 123, 108355 (2021). https://doi.org/10.1016/j.inoche.2020.108355

    Article  CAS  Google Scholar 

  42. N. Joshi, T. Hayasaka, Y. Liu, H. Liu, O.N. Oliveira, L. Lin, A review on chemiresistive room temperature gas sensors based on metal oxide nanostructures, graphene and 2D transition metal dichalcogenides. Microchim. Acta 185, 213 (2018). https://doi.org/10.1007/s00604-018-2750-5

    Article  CAS  Google Scholar 

  43. H.-J. Kim, J.-H. Lee, Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview. Sens. Actuators B 92, 607–627 (2014). https://doi.org/10.1016/j.snb.2013.11.005

    Article  CAS  Google Scholar 

  44. S. Thirumalairajan, A novel organic pollutants gas sensing material p-type CuAlO2 microsphere constituted of nanoparticles for environmental remediation. Sens. Actuators B 223, 138–148 (2015). https://doi.org/10.1016/j.snb.2015.09.092

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the department of science and technology, government of India vides Reference No: DST/TM/WTI/2K16/248 (G) and inter-university accelerator centre (IUAC), New Delhi vide Reference No: IUAC/XIII.7/UFR-63304.

Funding

This work is supported by the DST, New Delhi [Grant No. DST/TM/WTI/2K16/248 (G)], Inter-University Accelerator Centre [Grant No. IUAC/XIII.7/UFR-63304].

Author information

Authors and Affiliations

Authors

Contributions

MQ: Conceptualization, Methodology, Writing—original draft. SI: Methodology, Software, Analysis. GFM: Conceptualization, Methodology, Software, Analysis. KAS: Writing—review & editing, Conceptualization, Methodology, Formal analysis, Investigation, Supervision. MQL: Conceptualization, Investigation. RTRK: Writing—review & editing, Conceptualization, Methodology, Experiments. GND: Writing—review & editing, Conceptualization, Methodology, Formal analysis, Investigation, Supervision.

Corresponding author

Correspondence to Ghulam Nabi Dar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this research article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qayoom, M., Irfan, S., Malik, G.F. et al. Modified solution combustion-grown Zn-doped Ni–Mg ferrite nanostructures for room temperature NH3 sensing. J Mater Sci: Mater Electron 33, 25645–25660 (2022). https://doi.org/10.1007/s10854-022-09261-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09261-y

Navigation