Skip to main content
Log in

Microstructure, dielectric and ferroelectric properties of (1-x)Bi0.5Na0.5TiO3-x(0.8Ba0.9Sr0.1TiO3-0.2BiFeO3) lead-free ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

(1-x)Na0.5Bi0.5TiO3-x(0.8Ba0.9Sr0.1TiO3-0.2BiFeO3)[(1-x) NBT-x(0.8BST-0.2BFO), x = 0, 0.04, 0.08, 0.12]) ceramics were prepared by conventional solid reaction method, and the effects of composition on the microstructure and electrical properties were comparatively studied. The X-ray diffraction results confirm a pure perovskite structure and a cubic structure of the ceramics possess, no obvious impurity phase can be observed. In addition, compared with x = 0, the diffraction peak intensities of other components shift to the left side, indicating that BST and BFO have been entered into the NBT lattice in varying degrees. There are two different morphologies of grains, indicating the uniform distribution of composition, and the grain size along the length direction ranges from 6.19 μm (x = 0.08) to 14.35 μm (x = 0.04). The addition of 0.8BST-0.2BFO retards the grain growth and induces two dielectric anomalies at high temperatures, and the relaxation process has been proved. The dielectric constant of the sample x = 0.08 is the lowest, which is smaller than 800, while it raises to larger than 1000 when x = 0.04. The Curie temperature decreases significantly after doping. After a large amount of BST and BFO doping, the ferroelectric long-range order of the ceramics is destroyed, and the hysteresis loop changes to elongated shape. When the doping amount is x = 0.04, a larger remanant polarization ~ 25 μC/cm2) is obtained. The ferroelectric hysteresis loops with high concentration of 0.8BST-0.2BFO show more slim shape, indicating stronger relaxation behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. W. Liu, X. Ren, Large piezoelectric effect in Pb-free ceramics. Phys RevLett. 103, 257602 (2009)

    Google Scholar 

  2. C. Zhou, X. Liu, W. Li et al., Dielectric and piezoelectric properties of Bi0.5Na0.5TiO3-Bi0.5K0.5TiO3-BiCrO3 lead-free piezoelectric ceramics. J. Mater. Sci. Mater. Electron. 478, 381–385 (2009)

    CAS  Google Scholar 

  3. Z. Xu, L. Yao, C.L. Zhao et al., Effect of manganese doping on ferroelectric and piezoelectric properties of KNbO3 and (K0.5Na0.5)NbO3 lead-free ceramics. Acta Physica Sinica -Chinese Edition 69(12), 127705 (2020)

    Article  Google Scholar 

  4. H. Nguyen, T.A. Duong, F. Erkinov et al., Effect of SrTiO3 modification on dielectric, phase transition and piezoelectric properties of lead-free Bi0.5Na0.5TiO3CaTiO3SrTiO3 piezoelectric ceramics. J. Korean Ceram. Soc 57, 1–8 (2020)

    Article  CAS  Google Scholar 

  5. R.L. Gao, H.W. Yang, J.R. Sun, Y.G. Zhao, B.G. Shen, Oxygen vacancies induced switchable and nonswitchable photovoltaic effects in Ag/Bi0.9La0.1FeO3/La0.7Sr0.3MnO3 sandwiched capacitors. Appl. Phys. Lett. 104, 031906 (2014)

    Article  Google Scholar 

  6. Z. Jinyan, N.A. Gang, R.A. Wei et al., Polarization behavior of` lead-free 0.94(Bi0.5Na0.5)TiO3–0.06BaTiO3 thin films with enhanced ferroelectric properties—ScienceDirec. J. Eur Ceram Soc 40, 3928–3935 (2020)

    Article  Google Scholar 

  7. V. Tran, H.V. Lai, V.L. Van et al., Structure evolution and electrical properties of lead-free Bi0.5Na0.41K0.09TiO3 piezoceramics by isovalent La doping. J. Mater. Sci.: Mater. Electron. 32, 4363–4371 (2021)

    CAS  Google Scholar 

  8. H. He, X. Lu, M. Li et al., Thermal and compositional driven relaxor ferroelectric behaviours of lead-free Bi0.5Na0.5TiO3-SrTiO3 ceramics. J. Mater. Chem C 8, 2411–2418 (2020)

    Article  CAS  Google Scholar 

  9. Y. Takagi, H. Nagata, T. Takenaka, Effects of quenching on bending strength and piezoelectric properties of (Bi0.5Na0.5)TiO3 ceramics. J. Asian Ceram Soc 8(2), 1–7 (2020)

    Article  Google Scholar 

  10. N. Truong-Tho, D.L. Vuong, Study on the strain behavior and piezoelectric properties of lead-free Bi0.5(Na0.8K0.2)0.5TiO3 ceramics modified with Sn4+ ions. J. Mater. Sci: Mater. Electron 32, 16601–16611 (2021)

    CAS  Google Scholar 

  11. V. Kalem, Structural and electrical properties of SrTiO3-modified Bi05(Na, K)05TiO3 lead-free ceramics. J. Mater. Sci. Mater. Electron 27(8), 8606–8612 (2016)

    Article  CAS  Google Scholar 

  12. H. Ogawa, K. Nishimoto, D. Iida et al., Temperature dependence of dielectric and ferroelectric properties for (1x)Bi0.5(Na0.8K0.2)0.5TiO3-xBaZn0.5W0.5O3 lead-free piezoelectric ceramics. Ferroelectrics 499(1), 90–99 (2016)

    Article  CAS  Google Scholar 

  13. G. Liu, W.T. Jiang, K.H. Liu, X.K. Liu, C.L. Song, Y. Yan, L. Jin, An investigation of dielectric, piezoelectric properties and microstructures of Bi0.5Na0.5TiO3-BaTiO3-Bi0.5K0.5TiO3 lead-free piezoelectric ceramics doped with K2AlNbO5 Compound[J]. J. Electron Mater 46(8), 5287–5295 (2017)

    Article  CAS  Google Scholar 

  14. M. Chandrasekhar, G. Jayarao, D.K. Khatua, P. Kumar, Effect of NaNbO3 addition on structure, dielectric and energy storage properties of lead free piezoelectric Bi0.5Na0.5TiO3-K0.5Na0.5NbO3 ceramics. Ceram Int 45, 1969–1976 (2019)

    Article  CAS  Google Scholar 

  15. A.C. Song, S.S. Won, H.J. Seog, A. Ullah, I.W. Kim, Large transverse piezoelectric properties of lead-free Bi0.5(Na0.82K0.18)0.5TiO3 films. Curr. Appl. Phys. 16(4), 429–434 (2016)

    Article  Google Scholar 

  16. H. Wu, W.C. Li, H. Ao, Z.X. Zeng, X.F. Qin, S.L. Xing, C. Zhou, R.L. Gao, X.L. Deng, W. Ca, G. Chen, Z.H. Wang, X. Lei, C.L. Fu, Effect of holding time on microstructure, ferroelectric and energy-storage properties of Pb0.925La0.05Zr0.95Ti0.05O3@SiO2 ceramics. J. Alloys Compd 896, 162932 (2021)

    Article  Google Scholar 

  17. X.F. Qin, H. Wu, C.Y. Chen, H. Ao, W.C. Li, R.L. Gao, W. Cai, G. Chen, X.L. Deng, Z.H. Wang, X. Lei, C.L. Fu, Enhanced energy-storage performance of Pb0.925La0.05Zr0.95Ti0.05@xwt%SiO2 composite ceramics. J. Alloy. Compd 890, 161869 (2021)

    Article  Google Scholar 

  18. C.Y. Li, R.C. Xu, R.L. Gao, Z.H. Wang, G. Chen, X. Deng, W. Cai, C.L. Fu, Q.T. Li, Structure, dielectric, piezoelectric, antiferroelectric and magnetic properties of CoFe2O4-PbZr0.52Ti0.48O3 composite ceramics. Mater. Chem. Phys 249, 123144 (2020)

    Article  CAS  Google Scholar 

  19. R.C. Xu, Z.H. Wang, R.L. Gao, S.L. Zhang, Q.W. Zhang, Z.D. Li, C.Y. Li, G. Chen, X.L. Deng, W. Cai, C.L. Fu, Effect of molar ratio on the microstructure, dielectric and multiferroic properties of Ni0.5Zn0.5Fe2O4-Pb0.8Zr0.2TiO3 nanocomposite. J. Mater. Sci.: Mater. Electron. 29, 16226–16237 (2018)

    CAS  Google Scholar 

  20. R.L. Gao, C.L. Fu, W. Cai, G. Chen, X.L. Deng, H.R. Zhang, J.R. Sun, B.G. Shen, Electric Control of the Hall effect in Pt/Bi0.9La0.1FeO3 bilayers. Sci. Rep. 6, 20330 (2016)

    Article  CAS  Google Scholar 

  21. R.L. Gao, C.L. Fu, W. Cai, G. Chen, X.L. Deng, X.L. Cao, Switchable photovoltaic effect in Au/Bi0.9La0.1FeO3/La0.7Sr0.3MnO3 heterostructures. Mater. Chem. Phys 181, 277–283 (2016)

    Article  CAS  Google Scholar 

  22. R.L. Gao, H.W. Yang, C.L. Fu, W. Cai, G. Chen, X.L. Deng, J.R. Sun, Y.G. Zhao, B.G. Shen, Tunable photovoltaic effects induced by different cooling oxygen pressure in Bi0.9La0.1FeO3 thin films. J. Alloys. Compd. 624, 1–8 (2015)

    Article  CAS  Google Scholar 

  23. R.L. Gao, Y.S. Chen, J.R. Sun, Y.G. Zhao, J.B. Li, B.G. Shen, The effect of polarization fatigue process and light illumination on the transport behavior of Bi0.9La0.1FeO3 sandwiched capacitor. J. Appl. Phys. 113, 183501 (2013)

    Article  Google Scholar 

  24. R.L. Gao, Y.S. Chen, J.R. Sun, Y.G. Zhao, J.B. Li, B.G. Shen, Complex transport behavior accompanying domain switching in La0.1Bi0.9FeO3 sandwiched capacitors. Appl. Phys. Lett. 101, 152901 (2012)

    Article  Google Scholar 

  25. W. Cai, C.L. Fu, G. Chen, R.L. Gao, X.L. Deng, Dielectric and ferroelectric properties of xBaZr0.52Ti0.48O3-(1–x)BiFeO3 solid solution ceramics. J. Mat. Sci.: Mater. Elec. 26(1), 322–330 (2015)

    CAS  Google Scholar 

  26. W. Cai, S.X. Zhong, C.L. Fu, G. Chen, X.L. Deng, Microstructure, dielectric and ferroelectric properties of xBaZr0.2Ti0.8O3-(1–x)BiFeO3 solid solution ceramics. Mater. Res. Bull. 50, 259–267 (2014)

    Article  CAS  Google Scholar 

  27. M.T. Buscaglia, L. Mitoseriu, V. Buscaglia, I. Pallecchi, M. Viviani, P. Nanni, Preparation and characterisation of the magnetoelectric xBiFeO3-(1–x)BaTiO3 ceramics. J Eur Ceram Soc 26, 3027–3030 (2006)

    Article  CAS  Google Scholar 

  28. R.L. Gao, Q.M. Zhang, Z.Y. Xu, Z.H. Wang, G. Chen, X.L. Deng, C.L. Fu, W. Cai, A comparative study on the structural, dielectric and multiferroic properties of Co0.6Cu0.3Zn0.1Fe2O4/Ba0.9Sr0.1Zr0.1Ti0.9O3 composite ceramics. Compos. B 166, 204–212 (2019)

    Article  CAS  Google Scholar 

  29. R.L. Gao, X.F. Qin, Q.M. Zhang, Z.Y. Xu, Z.H. Wang, C.L. Fu, G. Chen, X.L. Deng, W. Cai, Enhancement of Magnetoelectric properties of (1–x)Mn0.5Zn0.5Fe2O4-xBa0.85Sr0.15Ti0.9Hf0.1O3 composite ceramics. J. Alloys Compd 795, 501–512 (2019)

    Article  CAS  Google Scholar 

  30. W. Jo, S. Schaab, E. Sapper et al., On the phase identify and its thermal evolution of lead free (Bi0.5Na0.5)TiO3–6 mol%BaTiO3[J]. J. Appl. Phys 110, 074106 (2011)

    Article  Google Scholar 

  31. V.V. Shvartsman, D.C. Lupascu, Lead-free relaxor ferroelectrics. J. Am. Ceram. Soc. 95, 1–26 (2012)

    Article  CAS  Google Scholar 

  32. L. Jin, J. Pang, W. Luo, Y. Huang, R. Jing, J. Xu, D. Guo, Q. Hu, Y. Tian, X. Lu, X. Wei, F. Gao, Enhanced breakdown strength and improved ferroelectric properties in lead-containing relaxor ferroelectric ceramics with addition of glass. Mater. Res. Express 6, 116310 (2019)

    Article  CAS  Google Scholar 

  33. M.I. Morozov, D. Damjanovic, Charge migration in Pb(Zr, Ti)O3ceramics and its relation to ageing, hardening, and softening. J. Appl. Phys. 107, 034106 (2010)

    Article  Google Scholar 

  34. T. Wang, J. Hu, H. Yang, L. Jin, X. Wei, C. Li, F. Yan, Y. Lin, Dielectric relaxation and Maxwell-Wagner interface polarization in Nb2O5doped 0.65BiFeO3-0.35BaTiO3 ceramics. J. Appl. Phys. 121, 084103 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The present work has been supported by the Self-deployed Projects of Ganjiang Innovation Academy, Chinese Academy of Sciences; the Key Research Program of the Chinese Academy of Sciences (ZDRW-CN-2021-3), the Scientific and Technological Research Program of Chongqing Municipal Education Commission (KJZD-M201901501, KJQN201801509), the Scientific and Technological Research Key Program of Chongqing Municipal Education Commission (KJZD-K20220150), the Chongqing Research Program of Basic Research and Frontier Technology (cstc2019jcyj-msxmX0071, cstc2021jcyj-msxmX0008, cstc2021jcyj-msxmX0039, cstc2021jcyj-msxmX0599), the Program for Creative Research Groups in University of Chongqing (CXQT19031), the Innovation Program for Chongqing's Overseas Returnees (cx2019159), the Natural Science Foundation of Chongqing (cstc2020jcyj-zdxmX0008, cstc2020jcyj-msxmX0030), the Leading Talents of Scientific and Technological Innovation in Chongqing(CSTCCXLJRC201919), the special project of Chongqing technology innovation and application development (cstc2020jscx-msxmX0218), The Provincial and Ministerial Co-constructive of Collaborative Innovation Center for MSW Comprehensive Utilization, the Scientific and Technological Research Young Program of Chongqing Municipal Education Commission(KJQN202001528), the Research Foundation of Chongqing University of Science and Technology (No. Ckrc2019020), and the Postgraduate Technology Innovation Project of the Chongqing University of Science and Technology (Grant No. 2021187).

Funding

The authors declare that except the “Acknowledgments” part, no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation are performed by Ruijie Wu, data collection are performed by LiYuanJun Huang, Ligeng Jin, and Rongli Gao, data analysis were performed by Lang Bai. The first draft of the manuscript was written by Zhiyi Xu, all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Rongli Gao or Zhiyi Xu.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, R., Huang, L., Jin, L. et al. Microstructure, dielectric and ferroelectric properties of (1-x)Bi0.5Na0.5TiO3-x(0.8Ba0.9Sr0.1TiO3-0.2BiFeO3) lead-free ceramics. J Mater Sci: Mater Electron 33, 25404–25418 (2022). https://doi.org/10.1007/s10854-022-09246-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09246-x

Navigation