Skip to main content
Log in

Effect of Samarium doping on electrical conductivity of cupric oxide compound

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Monoclinic structures of pristine and Sm-doped CuO compounds are synthesized by solid-state reaction process. The energy band gap observed from diffused reflectance spectra for pristine CuO is 1.429 eV which decreases from 1.426 eV to 1.385 eV as the doping of Sm-ion is increased from 1 to 10% in Sm-doped CuO compounds, respectively. Temperature-dependent DC electrical resistivity of pristine and CuO compounds is studied by using Arrhenius model, pristine and Sm-doped CuO compounds confirm the semiconducting nature with the decrease in electrical resistivity and activation energy as the doping percentage of Sm-ion is increased in Sm-doped CuO compounds. Band conduction model, and variable range hopping (VRH) model explains the conduction mechanism of CuO and Sm-doped CuO compounds in high temperature range (162–205 K) and low temperature range (114–162 K), respectively. Rectification ratio, polarization resistance and ideality factor are calculated at room temperature for pristine and Sm-doped CuO compounds using Tafel plots. Decrease in polarization resistance, ideality factor of pristine and Sm-doped CuO compounds with increase in dopant (Sm) ion concentration is observed which may be attributed to creation of more charge carriers with doping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. M.S. Chavali, M.P. Nikolova, SN Appl. Sci. 1, 607 (2019)

    Article  CAS  Google Scholar 

  2. X.P. Gao, J.L. Bao, G.L. Pan, H.Y. Zhu, P.Y. Huang, F. Wu, D.Y. Song, J. Phys. Chem. B 108, 5547–5551 (2004)

    Article  CAS  Google Scholar 

  3. H. Pan, L. Yang, W. Hua, X. Wu, Z. Wu, S. Xie, B. Zou, Nanotechnology 15, 37–42 (2003)

    Google Scholar 

  4. K. Han, M. Tao, Solar Energy Mater. Solar Cells 93, 153–157 (2009)

    Article  CAS  Google Scholar 

  5. S. Steinhauer, E. Brunet, T. Maier, G. Mutinati, A. Kock, U. Freudenberg, C. Gspan, W. Grogger, A. Neuhold, R. Resel, B Sens Actuator Chem. 187, 50–57 (2013)

    Article  CAS  Google Scholar 

  6. F. Bayansal, Y. Gulen, B. Sahin, S. Kahrman, H.A. Cetinkara, J. Alloys Compd. 619, 378–382 (2015)

    Article  CAS  Google Scholar 

  7. S.S. Gomathi, G.K. Vanathi Nachiyar, P. Nandhini, Int. J. Scientific. Res. 5, 339 (2016)

    Google Scholar 

  8. L. Liao, Z. Zhang, B. Yan, Z. Zheng, Q.L. Bao, T. Wu, C.M. Li, Z.X. Shen, J.X. Zhang, H. Gong, Nanotechnology 20, 085203 (2009)

    Article  CAS  Google Scholar 

  9. P. Deka, R.C. Deka, P. Bharali, New J. Chem. 40, 348–357 (2016)

    Article  CAS  Google Scholar 

  10. M.D. Khosravi, M. Ghahari, M.S. Afarani, A.M. Arabi, Advanced Ceramics Progress 8(1), 1–8 (2022)

    CAS  Google Scholar 

  11. C. Thangamani, M. Ponnar, P. Priyadharshini, P. Monisha, S.S. Gomathi, K. Pushpanathan, Surf. Rev. Lett. 26, 1850184 (2019)

    Article  CAS  Google Scholar 

  12. P. Vomacka, V. Stengl, J. Henych, M. Kormunda, J. Colloid Interface Sci. 481, 28–38 (2016)

    Article  CAS  Google Scholar 

  13. H. Mersian, M. Alizadeh, N. Hadi, Ceram. Int. 44, 20399–20408 (2018)

    Article  CAS  Google Scholar 

  14. N.M. Basith, J.J. Vijaya, L.J. Kennedy, M. Bououdina, Mater. Sci. Semicond. Process. 17, 110–118 (2014)

    Article  CAS  Google Scholar 

  15. W. Gao, S. Yang, S. Yang, L. Lv, Y. Du, Phys. Lett. A 375(2), 180–182 (2010)

    Article  CAS  Google Scholar 

  16. N. Ekthammathat, A. Phuruangrat, T. Thongtem, S. Thongtem, Mater. Lett. 167, 266–269 (2016)

    Article  CAS  Google Scholar 

  17. K. Liu, S. Yuan, H. Duan, S. Yin, Z. Tian, X. Zheng, S. Huo, C. Wang, Mater. Lett. 64(2), 192–194 (2010)

    Article  CAS  Google Scholar 

  18. Q.-J. Liu, N.-C. Zhang, Y.-Y. Sun, F.-S. Liu, Z.-T. Liu, Solid State Sci. 31, 37–45 (2014)

    Article  Google Scholar 

  19. L. Vimala Devi, T. Selvalakshmi, S. Sellaiyan, P. Sahaya Murphin, Kumar, S. Sankar “Journal of Material Science: materials in Electronics (2018).

  20. T.X. Liu, X.Z. Li, F.B. Li, Chem. Eng. J. 157, 475–482 (2010)

    Article  CAS  Google Scholar 

  21. S.C. Tsang, C. Bulpitt, Sens. Actuators B 52, 226–235 (1998)

    Article  CAS  Google Scholar 

  22. M. Ponnar, C. Thangamani, P. Monisha, S.S. Gomathi, K. Pushpanathan, Appl. Surf. Sci. 449, 132–143 (2018)

    Article  CAS  Google Scholar 

  23. S. Ruzgar, Y. Caglar, O. Polat, D. Sobola, M. Caglar, Surf. Interfaces 21, 10075 (2020)

    Google Scholar 

  24. C. Muiva, L.M. Leposide, R. Bosigo, A. Juma, Materials Characterization, S 1044–5803, 32178–1(2020).

  25. R.O. Yathisha, Y. Arthoba Nayaka, P. Manjunatha, H.T. Purushothama, M.M. Vinay, K.V. Basavarajappa, Physica E Low. Dimens. Syst. Nanostruct (2018). https://doi.org/10.1016/J.PHYSE.2018.12.021

    Article  Google Scholar 

  26. M. Faraz, F. K. Naqvi, M. Shakira, N. Khare, New J. Chem (2018).

  27. J.A.M. Cosico, M.C. Marquez, Key Eng. Mater. 853, 73–77 (2020)

    Article  Google Scholar 

  28. T. Shahid, M. Arfan, A. Zeb, T. BiBi, T.M. Khan, Nanomater Nanotechnol (2018). https://doi.org/10.1177/1847980418761775

    Article  Google Scholar 

  29. M. Arfan, D.N. Siddiqui, T. Shahid, Z. Iqbal, Y. Majeed, I. Akram, Noreen, R. Bagheri, Z. Song, A. Zeb, Res Phys. 13, 10218 (2019)

    Google Scholar 

  30. J. Yang, R. Wang, L. Yang, J. Lang, M. Wei, M. Gao, X. Liu, J. Cao, X. Li, N. Yang, J. Alloys Compd. 509(8), 3606–3612 (2011)

    Article  CAS  Google Scholar 

  31. Y. Tan, Z. Fang, W. Chen, P. He, J. Alloys Compd. 509(21), 6321–6324 (2011)

    Article  CAS  Google Scholar 

  32. T. Jia, W. Wang, F. Long, Z. Fu, H. Wang, Zhang. Mater. Sci. Eng. B 162, 179–184 (2009)

    Article  CAS  Google Scholar 

  33. K. Borgohain, J. Singh, M.R. Rao, T. Shripathi, S. Mahamuni, Phys. Rev. B 61(16), 11093 (2000)

    Article  CAS  Google Scholar 

  34. G.I. Dovbeshko, N.Y. Gridina, E.B. Kruglova, O.P. Pashchuk, Talanta 53, 233–246 (1997)

    Article  Google Scholar 

  35. F. Fang, J. Kennedy, D. Carder, J. Futter, S. Rubanov, Opt. Mater. (Amst.) 36, 1260–1265 (2014)

    Article  CAS  Google Scholar 

  36. Z.V. Kliche, Popovic. Phys. Rev. B 42, 10060–10066 (1990). https://doi.org/10.1103/PhysRevB.42.10060

    Article  CAS  Google Scholar 

  37. J. Chrzanowski, J.C. Irwin, Solid State Commun. 70, 11–14 (1989). https://doi.org/10.1016/0038-1098(89)90457-2

    Article  CAS  Google Scholar 

  38. L. Debbichi, M.C.M. Lucas, J.F. Pierson, P. Krüger, J. Phys. Chem. C 18, 10232–10237 (2012)

    Article  Google Scholar 

  39. W. Reichardt, F. Gompf, M. Aïn, B.M. Wanklyn, Z. Phys, B Cond. Matter 81, 19–24 (1990)

    Article  CAS  Google Scholar 

  40. M.H. Chou, S.B. Liu, C.Y. Huang, S.Y. Wu, C.-L. Cheng, Appl. Surf. Sci. 254, 7539–7543 (2008)

    Article  CAS  Google Scholar 

  41. M. Parthibavarman, V. Hariharan, C. Sekar, Mater. Sci. Eng.: C 31, 840–844 (2011)

    Article  CAS  Google Scholar 

  42. V.S. Tengl, S. Bakardjieva, N. Murafa, Mater. Chem. Phys. 114, 217–226 (2009)

    Article  Google Scholar 

  43. H.-Y. He, J. Lu, MRS Commun. 3, 47–50 (2013)

    Article  CAS  Google Scholar 

  44. P. Bougiatioti, O. Manos, C. Klewe, D. Carsten, J. Appl. Phys. 122, 225101 (2017)

    Article  Google Scholar 

  45. J.C. González, G.M. Ribeiro, E.R. Viana, P.A. Fernandes, P.M.P. Salomé, K. Gutiérrez, A. Abelenda, F.M. Matinaga, J.P. Leitão, A.F. da Cunha, J. Phys. D Appl. Phys. 46, 155107 (2013)

    Article  Google Scholar 

  46. A. Bhogra, A. Masarrat, R. Meena, D. Hasina, M. Bala, C.L. Dong, C.L. Chen, T. Som, A. Kumar, A. Kandasami, Sci. Rep. 9, 14486 (2019)

    Article  Google Scholar 

  47. S.K. Kuanr, S. Nayak, K.S. Babu, Mater. Sci. Semicon. Proc. 71, 268–274 (2017)

    Article  CAS  Google Scholar 

  48. H.Y. He, J. Fei, J. Lu, J Nanostruct Chem 5, 169–175 (2015)

    Article  CAS  Google Scholar 

  49. M. Dongol , A. El-Denglawey , A. F. Elhady , A. A. Abuelwafa, Appl. Phys. A (2014).

  50. N.F. Mott, E.A. Davis, Electronic Processes in Non -Crystalline Materials (Clarendon Press, Oxford, 1971)

    Google Scholar 

  51. N.F. Mott, J. Non-Cryst, Solids 1, 8 (1972)

    Google Scholar 

  52. G.B. Abdullaev, S.I. Mekhtieva, D.S. Abdinov, G.M. Aliev, Phys. Status Solid A 11, 891 (1965)

    Article  CAS  Google Scholar 

  53. A.A. Abuelwafa, A. El-Denglawey, M. Dongol, M.M. El-Nahass, M.S. Ebied, T. Soga, Appl. Phys. A 124, 33 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Material Science Division, IUAC, New Delhi and UGC-DAE COSORTIUM, Indore for providing the characterization facilities.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this study.

Corresponding author

Correspondence to Vijay Kumar.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Research involving human and animal participants

This article does not contain any studies involving human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, R., Goyal, D.P., Kumar, V. et al. Effect of Samarium doping on electrical conductivity of cupric oxide compound. J Mater Sci: Mater Electron 33, 25392–25403 (2022). https://doi.org/10.1007/s10854-022-09245-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09245-y

Navigation