Skip to main content
Log in

Small amount of Fe/Cu/Mn-doped KNN-based ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Metal oxides (Fe2O3, CuO and MnO) are usually doped into KNN-based ceramic as sintering aids to improve its microstructure. But KNN-based ceramic is very sensitive to composition, small amount of dopant can generate huge electrical property change. In this work, we investigate small amount of three metal oxides (0.05 wt%) doping into 0.96K0.48Na0.52Nb0.96Sb0.04O3–0.04Bi0.5Na0.5ZrO3 ceramic. Due to their different ion radius, they replace different site ions of perovskite. Generating diametrically contradictory performance changes. Compared to undoped ceramic they display different doping features, the Fe/Mn-doped ceramics present soft doping feature while Cu-doped ceramic presents hard doping feature (undoped ceramic d33 = 470 pC/N, Fe-doped ceramic d33 = 520 pC/N, Cu-doped ceramic d33 = 400 pC/N, Mn-doped ceramic d33 = 483 pC/N). Our work shows that the effect of small amount of metal oxides on electrical properties cannot be ignored, and it provides some guidance for further understanding of the metal oxide doping mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. H.-C. Thong, C. Zhao, Z. Zhou, C.-F. Wu, Y.-X. Liu, Z.-Z. Du, J.-F. Li, W. Gong, K. Wang, Mater. Today 29, 37 (2019)

    Article  CAS  Google Scholar 

  2. T.R. Shrout, S.J. Zhang, J. Electroceramics 19, 113 (2007)

    Article  Google Scholar 

  3. J. Rödel, K.G. Webber, R. Dittmer, W. Jo, M. Kimura, D. Damjanovic, J. Eur. Ceram. Soc. 35, 1659 (2015)

    Article  Google Scholar 

  4. D.Q. Xiao, J.G. Wu, L. Wu, J.G. Zhu, P. Yu, D.M. Lin, Y.W. Liao, Y. Sun, J. Mater. Sci. 44, 5408 (2009)

    Article  CAS  Google Scholar 

  5. S. Zhang, X. Ru, T.R. Shrout, J. Electroceramics 19, 251 (2007)

    Article  Google Scholar 

  6. N.M. Hagh, B. Jadidian, E. Ashbahian, A. Safari, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55, 214 (2008)

    Article  Google Scholar 

  7. F. Hussain, A. Khesro, Z. Lu, N. Alotaibi, A.A. Mohamad, G. Wang, D. Wang, D. Zhou, Front. Mater. 7, 160 (2020)

    Article  Google Scholar 

  8. J.-W. Li, Y.-X. Liu, H.-C. Thong, Z. Du, Z. Li, Z.-X. Zhu, J.-K. Nie, J.-F. Geng, W. Gong, K. Wang, J. Alloys Compd. 847, 155936 (2020)

    Article  CAS  Google Scholar 

  9. S. Zhang, R. Xia, T.R. Shrout, G. Zang, J. Wang, J. Appl. Phys. 100, 104108 (2006)

    Article  Google Scholar 

  10. J. Hreščak, G. Dražić, M. Deluca, I. Arčon, A. Kodre, M. Dapiaggi, T. Rojac, B. Malič, A. Bencan, J. Eur. Ceram. Soc. 37, 2073 (2017)

    Article  Google Scholar 

  11. J. Li, F. Wang, C.M. Leung, S.W. Or, Y. Tang, X. Chen, T. Wang, X. Qin, W. Shi, J. Mater. Sci. 46, 5702 (2011)

    Article  CAS  Google Scholar 

  12. P. Jakes, H. Kungl, R. Schierholz, R.-A. Eichel, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61, 1447 (2014)

    Article  Google Scholar 

  13. J. Li, W. Wu, Y. Shen, P. Zhang, Y. Wu, Q. Meng, Z. Zhou, D. Jia, J. Electron. Mater. 47, 5773 (2018)

    Article  CAS  Google Scholar 

  14. H. Zhang, J. Zhou, J. Shen, X. Yang, C. Wu, K. Han, Z. Zhao, W. Chen, Ceram. Int. 43, 16395 (2017)

    Article  CAS  Google Scholar 

  15. X. Cao, H. Tian, C. Hu, F. Huang, Y. Wang, X. Sun, Z. Zhou, J. Am. Ceram. Soc. 102, 3117 (2019)

    Article  CAS  Google Scholar 

  16. F. Rubio-Marcos, P. Marchet, X. Vendrell, J.J. Romero, F. Rémondière, L. Mestres, J.F. Fernández, J. Alloys Compd. 509, 8804 (2011)

    Article  CAS  Google Scholar 

  17. X.P. Jiang, Y. Chen, K.H. Lam, S.H. Choy, J. Wang, J. Alloys Compd. 506, 323 (2010)

    Article  CAS  Google Scholar 

  18. Z. Cen, X. Wang, Y. Huan, L. Li, J. Am. Ceram. Soc. 101, 2391 (2018)

    Article  CAS  Google Scholar 

  19. Y. Liao, D. Wang, H. Wang, T. Wang, Q. Zheng, J. Yang, K.W. Kwok, D. Lin, Ceram. Int. 45, 13179 (2019)

    Article  CAS  Google Scholar 

  20. G. Jiao, H. Fan, L. Liu, W. Wang, Mater. Lett. 61, 4185 (2007)

    Article  CAS  Google Scholar 

  21. Y. Liao, D. Wang, H. Wang, L. Zhou, Q. Zheng, D. Lin, Dalt. Trans. 49, 1311 (2020)

    Article  CAS  Google Scholar 

  22. D. Lin, K.W. Kwok, H.L.W. Chan, Appl. Phys. Lett. 90, 232903 (2007)

    Article  Google Scholar 

  23. Y. Xie, J. Xing, Z. Tan, L. Xie, Y. Cheng, X. Wu, R. Han, Q. Chen, J. Zhu, Ceram. Int. 48, 6565 (2022)

    Article  CAS  Google Scholar 

  24. L. Wang, W. Ren, W. Ma, M. Liu, P. Shi, X. Wu, AIP Adv. 5, 97120 (2015)

    Article  Google Scholar 

  25. S. Ke, M. Mai, T. Li, M. Ye, P. Lin, X. Zeng, L.M. Zhou, Y.W. Mai, H. Huang, Int. J. Adv. Appl. Phys. Res. 2, 35 (2015)

    Article  Google Scholar 

  26. H. Wang, X. Zhai, J. Xu, C. Yuan, C. Zhou, X. Liu, J. Electron. Mater. 42, 458 (2013)

    Article  CAS  Google Scholar 

  27. L. Liu, D. Shi, L. Fan, J. Chen, G. Li, L. Fang, B. Elouadi, J. Mater. Sci. Mater. Electron. 26, 6592 (2015)

    Article  CAS  Google Scholar 

  28. R.E. Eitel, C.A. Randall, T.R. Shrout, P.W. Rehrig, W. Hackenberger, S.-E. Park, Jpn. J. Appl. Phys. 40, 5999 (2001)

    Article  CAS  Google Scholar 

  29. D. Damjanovic, Appl. Phys. Lett. 97, 62906 (2010)

    Article  Google Scholar 

  30. X. Lv, J. Wu, X. Zhang, Chem. Eng. J. 402, 126215 (2020)

    Article  CAS  Google Scholar 

  31. W. Liu, H. Wang, W. Hu, Y. Du, C. Cheng, Ceram. Int. 48, 9731 (2022)

    Article  CAS  Google Scholar 

  32. F. Rubio-Marcos, J.J. Romero, M.G. Navarro-Rojero, J.F. Fernandez, J. Eur. Ceram. Soc. 29, 3045 (2009)

    Article  CAS  Google Scholar 

  33. T. Wang, D. Wang, Y. Liao, Q. Zheng, H. Sun, K.W. Kwok, N. Jiang, W. Jie, C. Xu, D. Lin, J. Eur. Ceram. Soc. 38, 4915 (2018)

    Article  CAS  Google Scholar 

  34. B. He, W. Liu, B. Zhou, X. Wang, C. Cheng, Y. Du, Z. Li, J. Alloys Compd. 909, 164718 (2022)

    Article  CAS  Google Scholar 

Download references

Funding

No.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by WL, WL, BZ, HW, XG, SL, LL, YD and CC. The first draft of the manuscript was written by WL, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yi Du or Chuanbing Cheng.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 47 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Zhou, B., Wang, H. et al. Small amount of Fe/Cu/Mn-doped KNN-based ceramics. J Mater Sci: Mater Electron 33, 25232–25238 (2022). https://doi.org/10.1007/s10854-022-09227-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09227-0

Navigation