Skip to main content
Log in

Enhanced electrocaloric performance within wide temperature span in Al-doped BaZr0.2Ti0.8O3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Al-doped BaZr0.2Ti0.8O3 (BZT20) ceramics were prepared by solid-state sintering, and the relaxation degree of phase transition was tailored effectively. The microstructure, dielectric properties, ferroelectric properties, and electrocaloric (EC) performance of Al2O3-doped BZT20 ceramics were studied, respectively. The results show that Al2O3 doping induces changes in Curie temperature and dielectric properties. When the additive amount of Al2O3 is 1.25 at.%, the Curie temperature drops to around room temperature (RT), and the dielectric loss is lower than that of pure BZT20 ceramics. The diffusion constant γ reaches a minimum value of 1.57 when the Al2O3 content is 1.25 at.%, indicating that a relatively large latent heat would be gathered while there is a phase transition. As a result, an enhanced EC response of ∆Tmax = 0.293 K near RT is obtained when the Al2O3 content is 1.25 at.%, which is 1.6 times that of pure BZT20. It is also impressive that a wide working temperature range can be obtained, that is, Tspan = 73 K for BZT20 ceramics with 1 at.% of Al3+ ionic content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. I. Dincer, Refrigeration systems and applications (Wiley, Hoboken, 2017), pp.109–111

    Book  Google Scholar 

  2. J. Shi, D. Han, Z. Li et al., Joule 3, 1200–1225 (2019)

    Article  Google Scholar 

  3. G. Suchaneck, G. Gerlach, Mater. Today Proc. 3, 622–631 (2016)

    Article  Google Scholar 

  4. X. Moya, E. Defay, V. Heine, N.D. Mathur, Nat. Phys. 11, 202–205 (2015)

    Article  CAS  Google Scholar 

  5. B. Neese, B. Chu, S.-G. Lu, Y. Wang, E. Furman, Q. Zhang, Science 321, 821–823 (2008)

    Article  CAS  Google Scholar 

  6. X. Moya, S. Kar-Narayan, N.D. Mathur, Nat. Mater. 13, 439–450 (2014)

    Article  CAS  Google Scholar 

  7. M. Valant, Prog. Mater. Sci. 57, 980–1009 (2012)

    Article  CAS  Google Scholar 

  8. S.G. Lu, Q. Zhang, Adv. Mater. 21, 1983–1987 (2009)

    Article  CAS  Google Scholar 

  9. C. Zhao, J. Yang, Y. Huang, X. Hao, J. Wu, J. Mater. Chem. A 7, 25526–25536 (2019)

    Article  CAS  Google Scholar 

  10. C. Yang, C. Feng, P. Lv et al., Nano Energy 88, 106–222 (2021)

    Article  Google Scholar 

  11. A. Torelló, P. Lheritier, T. Usui et al., Science 370, 125–129 (2020)

    Article  Google Scholar 

  12. Y. Wang, Z. Zhang, T. Usui et al., Science 370, 129–133 (2020)

    Article  CAS  Google Scholar 

  13. A. Mischenko, Q. Zhang, J. Scott, R. Whatmore, N. Mathur, Science 311, 1270–1271 (2006)

    Article  CAS  Google Scholar 

  14. H.-X. Li, X.-D. Jian, X. Niu, Y.-B. Yao, T. Tao, B. Liang, S.-G. Lu, Scripta Mater. 176, 67–72 (2020)

    Article  CAS  Google Scholar 

  15. X.S. Qian, H.J. Ye, Y.T. Zhang, H. Gu, X. Li, C. Randall, Q. Zhang, Adv. Funct. Mater. 24, 1300–1305 (2014)

    Article  CAS  Google Scholar 

  16. Y. Wang, J. Li, R. Yuan et al., J. Alloys Compd. 851, 156–772 (2021)

    Google Scholar 

  17. R. Kumar, S. Singh, J. Alloys Compd. 723, 589–594 (2017)

    Article  CAS  Google Scholar 

  18. G. Zhang, Z. Chen, B. Fan et al., APL Mater. 4, 064–103 (2016)

    Google Scholar 

  19. X.Q. Liu, T.T. Chen, M.S. Fu, Y.J. Wu, X.M. Chen, Ceram. Int. 40, 11269–11276 (2014)

    Article  CAS  Google Scholar 

  20. I. Takeuchi, K. Sandeman, Phys. Today 68, 48 (2015)

    Article  CAS  Google Scholar 

  21. C. Ang, Z. Yu, Adv. Mater. 18, 103–106 (2006)

    Article  CAS  Google Scholar 

  22. B. Nair, T. Usui, S. Crossley et al., Nature 575, 468–472 (2019)

    Article  CAS  Google Scholar 

  23. F. Weyland, M. Acosta, J. Koruza, P. Breckner, J. Rödel, N. Novak, Adv. Funct. Mater. 26, 7326–7333 (2016)

    Article  CAS  Google Scholar 

  24. J. Qian, P. Hu, C. Liu et al., Sci. Bull. 63, 356–361 (2018)

    Article  CAS  Google Scholar 

  25. F. Weyland, R. Hayati, N. Novak, Ceram. Int. 45, 11408–11412 (2019)

    Article  CAS  Google Scholar 

  26. X.-D. Jian, B. Lu, D.-D. Li et al., ACS Appl. Mater. Interfaces 10, 4801–4807 (2018)

    Article  CAS  Google Scholar 

  27. R.D. Shannon, Acta Crystallogr. A 32, 751–767 (1976)

    Article  Google Scholar 

  28. S. Jiansirisomboon, A. Watcharapasorn, Curr. Appl. Phys. 8, 4852 (2008)

    Article  Google Scholar 

  29. F.C. Fulson, T.C. Rutt, J. Electrochem. Soc. 126, 1656 (1979)

    Article  Google Scholar 

  30. J.G. Fisher, S.Y. Choi, S.J.L. Kang, J. Am. Ceram. Soc. 89, 2206–2212 (2006)

    CAS  Google Scholar 

  31. T. Kutty, N. Hari, Mater. Lett. 34, 4349 (1998)

    Article  Google Scholar 

  32. N. Hari, T. Kutty, J. Mater. Sci. 33, 3275–3284 (1998)

    Article  CAS  Google Scholar 

  33. E. Salje, U. Bismayer, B. Wruck, J. Hensler, Phase Transit. 35, 61–74 (1991)

    Article  CAS  Google Scholar 

  34. X. Liang, W. Wu, Z. Meng, Mater. Sci. Eng. B 99, 366–369 (2003)

    Article  Google Scholar 

  35. X. Tang, K.-H. Chew, H. Chan, Acta Mater. 52, 5177–5183 (2004)

    Article  CAS  Google Scholar 

  36. K. Uchino, S. Nomura, Ferroelectrics 44, 55–61 (1982)

    Article  CAS  Google Scholar 

  37. T. Maiti, R. Guo, A. Bhalla, J. Am. Ceram. Soc. 91, 1769–1780 (2008)

    Article  CAS  Google Scholar 

  38. R. Yin, J. Li, X. Su et al., Adv. Funct. Mater. 32, 2108182 (2022)

    Article  CAS  Google Scholar 

  39. H. Tao, J. Yin, C. Zhao, B. Wu, L. Zhao, J. Ma, J. Wu, J. Mater. Chem. A 10, 5262–5272 (2022)

    Article  CAS  Google Scholar 

  40. Y. Yu, F. Gao, F. Weyland et al., J. Mater. Chem. A 7, 11665–11672 (2019)

    Article  CAS  Google Scholar 

  41. Y. Nouchokgwe, P. Lheritier, C.-H. Hong et al., Nat. Commun. 12, 17 (2021)

    Article  Google Scholar 

  42. Y. Bai, G.-P. Zheng, K. Ding, L. Qiao, S.-Q. Shi, D. Guo, J. Appl. Phys. 110, 094–103 (2011)

    Google Scholar 

Download references

Funding

The authors acknowledge the financial supports from the National Natural Science Foundation of China (Grant Nos. 52272131, 51602345), the Natural Science Foundation of Jiangsu Province (Grant No. BK20210137), Yue Qi Young Scholar Project of China University of Mining & Technology (Beijing) (Grant No. 2019QN12), the State Key Laboratory of New Ceramics and Fine Processing Tsinghua University (Grant Nos. KFZD201901, KF201910), and Open Fund of State Key Laboratory of Coal Resources and Safe Mining (Grant No. SKLCRSM19KFA13).

Author information

Authors and Affiliations

Authors

Contributions

LC contributed to investigation, methodology, and writing of the original draft. GJ contributed to synthesis, performance measurement, and writing of the original draft. ZM contributed to performance measurement and theory analysis. ZX contributed to performance measurement. MY contributed to performance measurement and theory analysis. JL contributed to performance measurement. KC contributed to methodology.

Corresponding author

Correspondence to Li-Qian Cheng.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interest or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1404 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, LQ., Jiang, G., Ma, Z. et al. Enhanced electrocaloric performance within wide temperature span in Al-doped BaZr0.2Ti0.8O3 ceramics. J Mater Sci: Mater Electron 33, 24986–24994 (2022). https://doi.org/10.1007/s10854-022-09207-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09207-4

Navigation