Skip to main content
Log in

Study of magnetic anisotropy in Si/Ni multilayers by static and dynamic magnetization processes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

To investigate magnetic anisotropy in Si/Ni multilayers, ferromagnetic resonance (FMR) and magnetization studies are carried out by preparing a series of samples of the form [Si(10 Å)/Ni(tNiÅ)]20, where tNi and 20 denote the Ni layer thickness and number of bilayers, respectively. The samples are prepared using a DC magnetron sputtering system by fixing the Si layer thickness at 10 Å and by varying the Ni layerthickness from 10 to 100 Å. The surface morphology study confirms that the multilayers were deposited smoothly over the substrates. The variation of the surface roughness with tNi attains a maximum for tNi = 50 Å. The structural study shows that the average crystallite size increases with as tNi increases. The magnetic anisotropy exhibited by the samples has been systematically studied through static and dynamic processes. The effective magnetization obtained from the MH loops and FMR spectra increases with increasing tNi and approaches towards the bulk value of Ni. Static and dynamic magnetization processes yeilds the values of surface anisotropy constant (Ks) and volume anisotropy constant (Kv) to be positive and negative, respectively. Through FMR studies, it is found that the rougher surfaces/interfaces lead to the multiple resonances peaks, higher asymmetry ratio, minimum value of spectroscopic splitting factor g and higher surface anisotropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. D. Singh, R. Roy, M. Senthil Kumar, Magnetic and magnetotransport study of Si/Ni multilayers correlated with structural and microstructural properties. J. Magn. Magn. Mater. 497, 166053 (2020). https://doi.org/10.1016/j.jmmm.2019.166053

    Article  CAS  Google Scholar 

  2. S.S. Das, M. Senthil Kumar, Enhancement of anomalous Hall effect in Si/Fe multilayers. J. Phys. D 46, 375003 (2013). https://doi.org/10.1088/0022-3727/46/37/375003

    Article  CAS  Google Scholar 

  3. Z. Zhang, S. Hao, Y. Zhang, L. Wang, T. Yu, X. Li, D. Li, G.H. Wu, X.X. Zhang, Q. Li, P. Chen, Giant magnetoresistance in Fe/In multilayers and its anomalous temperature dependence. Solid State Commun. 147, 381–384 (2008). https://doi.org/10.1016/j.ssc.2008.06.022

    Article  CAS  Google Scholar 

  4. S.S. Das, M. Senthil Kumar, Giant anomalous Hall effect in ultrathin Si/Fe bilayers. Mater. Lett. 142, 317–319 (2015). https://doi.org/10.1016/j.matlet.2014.12.042

    Article  CAS  Google Scholar 

  5. Y.W. Liu, W.B. Mi, E.Y. Jiang, H.L. Bai, Structure, magnetic, and transport properties of sputtered Fe/Ge multilayers. J. Appl. Phys. 102, 063712 (2007). https://doi.org/10.1063/1.2784014

    Article  CAS  Google Scholar 

  6. T. Lucinski, P. Chomiuk, Magnetic and electric properties of (Fe, Co)/(Si, Ge) multilayers. Open Phys. (2011). https://doi.org/10.2478/s11534-010-0145-2

    Article  Google Scholar 

  7. P.J. Grundy, J.M. Fallon, H.J. Blythe, Magnetic and electrical properties of Co/Si multilayer thin films. Phys. Rev. B. 62, 9566–9574 (2000). https://doi.org/10.1103/PhysRevB.62.9566

    Article  CAS  Google Scholar 

  8. K. Ando, E. Saitoh, Observation of the inverse spin Hall effect in silicon. Nat. Commun. 3, 629 (2012). https://doi.org/10.1038/ncomms1640

    Article  CAS  Google Scholar 

  9. R. Kumar, S. Chand, Fabrication and electrical characterization of nickel/p–Si Schottky diode at low temperature. Solid State Sci. 58, 115–121 (2016). https://doi.org/10.1016/j.solidstatesciences.2016.06.003

    Article  CAS  Google Scholar 

  10. S. Haque, A. Matsuo, Y. Seino, Y. Yamamoto, S. Yamada, H. Hori, Effect of GaAs substrate on the magnetic properties of Ni film. Physica B 305, 121–126 (2001). https://doi.org/10.1016/S0921-4526(01)00602-0

    Article  CAS  Google Scholar 

  11. A. Ashery, A.A.M. Farag, R. Mahani, Structural, electrical and magnetic characterizations of Ni/Cu/p–Si Schottky diodes prepared by liquid phase epitaxy. Microelectron. Eng. 87, 2218–2224 (2010). https://doi.org/10.1016/j.mee.2010.02.006

    Article  CAS  Google Scholar 

  12. N. Breil, C. Lavoie, A. Ozcan, F. Baumann, N. Klymko, K. Nummy, B. Sun, J. Jordan-Sweet, J. Yu, F. Zhu, S. Narasimha, M. Chudzik, Challenges of nickel silicidation in CMOS technologies. Microelectron. Eng. 137, 79–87 (2015). https://doi.org/10.1016/j.mee.2014.12.013

    Article  CAS  Google Scholar 

  13. A.R. Saha, S. Chattopadhyay, R. Das, C. Bose, C.K. Maiti, Determination of the interface properties of Ni-silicided strained-Si/SiGe heterostructure Schottky diodes using capacitance–voltage technique. Solid State Electron. 50, 1269–1275 (2006). https://doi.org/10.1016/j.sse.2006.06.001

    Article  CAS  Google Scholar 

  14. S.-L. Ou, S.-C. Chen, Y.-C. Lin, T.-Y. Kuo, Microstructure, crystallization kinetics and recording characteristics of Si/NiSi bilayer for write-once blu-ray disk. Thin Solid Films 570, 486–489 (2014). https://doi.org/10.1016/j.tsf.2014.04.035

    Article  CAS  Google Scholar 

  15. C.H.T. Chang, P.C. Jiang, Y.T. Chow, H.L. Hsiao, W. Bin Su, J.S. Tsay, Enhancing silicide formation in Ni/Si(111) by Ag–Si particles at the interface. Sci. Rep. (2019). https://doi.org/10.1038/s41598-019-45104-3

    Article  Google Scholar 

  16. G.H.O. Daalderop, P.J. Kelly, F.J.A. den Broeder, Prediction and confirmation of perpendicular magnetic anisotropy in Co/Ni multilayers. Phys. Rev. Lett. 68, 682–685 (1992). https://doi.org/10.1103/PhysRevLett.68.682

    Article  CAS  Google Scholar 

  17. M. Erkovan, S.T. Öztürk, R. Topkaya, M. Özdemir, B. Aktaş, O. Öztürk, Ferromagnetic resonance investigation of Py/Cr multilayer system. J. Appl. Phys. 110, 023908 (2011). https://doi.org/10.1063/1.3613700

    Article  CAS  Google Scholar 

  18. M.J. Johnson, P.J.H. Bloemen, F.J.A. den Broeder, J.J. de Vries, Reports on progress in Physics related content magnetic anisotropy in metallic multilayers. Rep. Prog. Phys. 59, 1409–1458 (1996). https://doi.org/10.1200/JCO.2010.29.7101

    Article  CAS  Google Scholar 

  19. M. Senthil Kumar, P. Böni, M. Horisberger, Perpendicular magnetic anisotropy, hysteresis and structural properties of nanostructured FeCoV/Ti multilayers. Physica B 325, 401–409 (2003). https://doi.org/10.1016/S0921-4526(02)01693-9

    Article  CAS  Google Scholar 

  20. E.B. Svedberg, CoCr/Pt multilayers with perpendicular anisotropy and texture-controlled coercivity. J. Appl. Phys. 92, 1024–1027 (2002). https://doi.org/10.1063/1.1486025

    Article  CAS  Google Scholar 

  21. J.M. Gallego, D. Lederman, S. Kim, I.K. Schuller, Oscillatory behavior of the transport properties in Ni/Co multilayers: a superlattice effect. Phys. Rev. Lett. 74, 4515–4518 (1995). https://doi.org/10.1103/PhysRevLett.74.4515

    Article  CAS  Google Scholar 

  22. N.R. Lee-Hone, R. Thanhoffer, V. Neu, R. Schäfer, M. Arora, R. Hübner, D. Suess, D.M. Broun, E. Girt, Roughness-induced domain structure in perpendicular Co/Ni multilayers. J. Magn. Magn. Mater. 441, 283–289 (2017). https://doi.org/10.1016/j.jmmm.2017.05.051

    Article  CAS  Google Scholar 

  23. D.B. Gopman, C.L. Dennis, P.J. Chen, Y.L. Iunin, P. Finkel, M. Staruch, R.D. Shull, Strain-assisted magnetization reversal in Co/Ni multilayers with perpendicular magnetic anisotropy. Sci. Rep. 6, 1–8 (2016). https://doi.org/10.1038/srep27774

    Article  CAS  Google Scholar 

  24. W.W. Jiang, J.P. Wang, T.C. Chong, [CoAl/Pd]n multilayers as perpendicular recording media. J. Appl. Phys. 91, 8067–8069 (2002). https://doi.org/10.1063/1.1454982

    Article  CAS  Google Scholar 

  25. P. Poulopoulos, V. Kapaklis, P.E. Jönsson, E.T. Papaioannou, A. Delimitis, S.D. Pappas, D. Trachylis, C. Politis, Positive surface and perpendicular magnetic anisotropy in natural nanomorphous Ni/NiO multilayers. Appl. Phys. Lett. 96, 202503 (2010). https://doi.org/10.1063/1.3428791

    Article  CAS  Google Scholar 

  26. M. Arora, R. Hübner, D. Suess, B. Heinrich, E. Girt, Origin of perpendicular magnetic anisotropy in Co/Ni multilayers. Phys. Rev. B. 96, 024401 (2017). https://doi.org/10.1103/PhysRevB.96.024401

    Article  Google Scholar 

  27. H. Lassri, H. Ouahmane, H. El Fanity, M. Bouanani, F. Cherkaoui, A. Berrada, Ferromagnetic resonance studies of electrodeposited Ni/Cu multilayers. Thin Solid Films 389, 245–249 (2001). https://doi.org/10.1016/S0040-6090(00)01920-9

    Article  CAS  Google Scholar 

  28. K. Chafai, H. Salhi, H. Lassri, Z. Yamkane, M. Lassri, M. Abid, E.K. Hlil, R. Krishnan, Magnetic studies in evaporated Ni/Pd multilayers. J. Magn. Magn. Mater. 323, 596–599 (2011). https://doi.org/10.1016/j.jmmm.2010.10.020

    Article  CAS  Google Scholar 

  29. K. Kyuno, J.-G. Ha, R. Yamamoto, S. Asano, Perpendicular magnetic anisotropy of metallic multilayers composed of magnetic layers only—Ni/Co and Ni/Fe multilayers. Jpn. J. Appl. Phys. 35, 2774–2778 (1996). https://doi.org/10.1143/JJAP.35.2774

    Article  CAS  Google Scholar 

  30. B. Tudu, K. Tian, A. Tiwari, Effect of composition and thickness on the perpendicular magnetic anisotropy of (Co/Pd) multilayers. Sensors 17, 2743 (2017). https://doi.org/10.3390/s17122743

    Article  CAS  Google Scholar 

  31. M.T. Johnson, P.J.H. Bloemen, F.J.A. den Broeder, J.J. de Vries, Magnetic anisotropy in metallic multilayers. Rep. Prog. Phys. 59, 1409–1458 (1996). https://doi.org/10.1088/0034-4885/59/11/002

    Article  CAS  Google Scholar 

  32. R. Bergholz, U. Gradmann, Structure and magnetism of oligatomic Ni(111)-films on Re(0001). J. Magn. Magn. Mater. 45, 389–398 (1984). https://doi.org/10.1016/0304-8853(84)90035-0

    Article  CAS  Google Scholar 

  33. S.T. Purcell, M.T. Johnson, N.W.E. McGee, W.B. Zeper, W. Hoving, Spatially resolved magneto-optical investigation of the perpendicular anisotropy in a wedge-shaped ultrathin epitaxial Co layer on Pd(111). J. Magn. Magn. Mater. 113, 257–263 (1992). https://doi.org/10.1016/0304-8853(92)91275-X

    Article  CAS  Google Scholar 

  34. H. Zijlstra, Experimental Methods in Magnetism, in Generation and computation of magnetic fields. ed. by E.P. Wohlfarth (North-Holland Publishing Company p, Amsterdam, 1967), p.562

    Google Scholar 

  35. Y. Cao, C. Zhou, Thickness dependence of surface roughness and magnetic properties of FeNiCr thin films. J. Magn. Magn. Mater. 333, 1–7 (2013). https://doi.org/10.1016/j.jmmm.2012.12.042

    Article  CAS  Google Scholar 

  36. H.E. Swanson, E. Tatge, Standard X-ray diffraction powder patterns. Natl. Bur. Stand. (US) Circ. 539, 1 (1953)

    Google Scholar 

  37. M. Senthil Kumar, P. Böni, D. Clemens, P. Böni, D. Clemens, Mechanical and structural properties of Ni/Ti multilayers and films: an application to neutron supermirrors. J. Appl. Phys. 84, 6940 (1998). https://doi.org/10.1063/1.368996

    Article  CAS  Google Scholar 

  38. P. Poulopoulos, S.D. Pappas, V. Kapaklis, P.E. Jönsson, E.T. Papaioannou, A. Delimitis, D. Trachylis, M.J. Velgakis, E.I. Meletis, C. Politis, Growth and magnetism of natural multilayers. J. Nano Res. 15, 95–103 (2011). https://doi.org/10.4028/www.scientific.net/JNanoR.15.95

    Article  CAS  Google Scholar 

  39. P. Scherrer, Bestimmung der grösse und der inneren struktur von kolloidteilchen mittels röntgenstrahlen. Nachr. Ges. Wiss. Göttingen. 26, 98 (1998)

    Google Scholar 

  40. V. Uvarov, I. Popov, Metrological characterization of X-ray diffraction methods at different acquisition geometries for determination of crystallite size in nano-scale materials. Mater. Charact. 85, 111–123 (2013). https://doi.org/10.1016/j.matchar.2013.09.002

    Article  CAS  Google Scholar 

  41. J.I. Langford, A.J.C. Wilson, Scherrer after 60 years: a survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. 11, 102–113 (1978). https://doi.org/10.1107/S0021889878012844

    Article  CAS  Google Scholar 

  42. B.D. Cullity, C.D. Graham, Introduction to magnetic materials, 2nd edn. (IEEE Press/Wiley, Piscataway, NJ, 2011)

    Google Scholar 

  43. S. El Khiraoui, M. Sajieddine, M. Hehn, S. Robert, O. Lenoble, C. Bellouard, M. Sahlaoui, K. Benkirane, Magnetic studies of Fe/Cu multilayers. Physica B 403, 2509–2514 (2008). https://doi.org/10.1016/j.physb.2008.01.015

    Article  CAS  Google Scholar 

  44. M. Senthil Kumar, P. Böni, Influence of interstitial nitrogen on the structural and magnetic properties of FeCoV/TiNx multilayers. J. Appl. Phys. 91, 3750–3758 (2002). https://doi.org/10.1063/1.1450259

    Article  CAS  Google Scholar 

  45. M. Abid, H. Ouahmane, H. Lassri, A. Khmou, R. Krishnan, Magnetic properties of Ni/V multilayers. J. Magn. Magn. Mater. 202, 335–341 (1999). https://doi.org/10.1016/S0304-8853(99)00359-5

    Article  CAS  Google Scholar 

  46. M.J. Pechan, E.E. Fullerton, W. Robertson, M. Grimsditch, I.K. Schuller, Determination of magnetic anisotropy in Fe/Cu multilayers: equivalence of dynamic and static measurements. Phys. Rev. B. 52, 3045–3048 (1995). https://doi.org/10.1103/PhysRevB.52.3045

    Article  CAS  Google Scholar 

  47. M. Lassri, M. Omri, H. Ouahmane, M. Abid, M. Ayadi, R. Krishnan, Magnetization and ferromagnetic resonance studies in Co/V multilayers. Physica B 344, 319–324 (2004). https://doi.org/10.1016/j.physb.2003.10.011

    Article  CAS  Google Scholar 

  48. F.J.A. den Broeder, W. Hoving, P.J.H. Bloemen, Magnetic anisotropy of multilayers. J. Magn. Magn. Mater. 93, 562–570 (1991). https://doi.org/10.1016/0304-8853(91)90404-X

    Article  Google Scholar 

  49. R. Kordecki, R. Meckenstock, J. Pelzl, S. Nikitov, J.C. Lodder, Investigations of bulk and surface spin wave modes in FeNi multilayers by spin wave resonance. J. Magn. Magn. Mater. 121, 524–527 (1993). https://doi.org/10.1016/0304-8853(93)91260-E

    Article  CAS  Google Scholar 

  50. Q.Y. Jin, Y.B. Xu, S.M. Zhou, M. Lu, H.R. Zhai, Y.H. Shen, A study of interlayer coupling in Fe/Cu multilayers by spin wave resonance. Phys. Status Solidi. 193, 457–461 (1996). https://doi.org/10.1002/pssb.2221930220

    Article  CAS  Google Scholar 

  51. L.J. Maksymowicz, D. Sendorek, Surface modes in magnetic thin amorphous films of GdCoMo alloys. J. Magn. Magn. Mater. 37, 177–188 (1983). https://doi.org/10.1016/0304-8853(83)90340-2

    Article  CAS  Google Scholar 

  52. H. Puszkarski, Theory of surface states in spin wave resonance. Prog. Surf. Sci. 9, 191–247 (1979). https://doi.org/10.1016/0079-6816(79)90013-3

    Article  CAS  Google Scholar 

  53. L. Zhang, G.T. Rado, Ferromagnetic resonance method for determining the magnetic surface anisotropy of amorphous films. Phys. Rev. B. 36, 7071–7077 (1987). https://doi.org/10.1103/PhysRevB.36.7071

    Article  CAS  Google Scholar 

  54. H. Hurdequint, FMR studies of single Fe layers sandwiched by Ag. J. Magn. Magn. Mater. 93, 336–340 (1991). https://doi.org/10.1016/0304-8853(91)90357-G

    Article  CAS  Google Scholar 

  55. C.A.F. Vaz, J.A.C. Bland, G. Lauhoff, Magnetism in ultrathin film structures. Rep. Prog. Phys. 71, 056501 (2008). https://doi.org/10.1088/0034-4885/71/5/056501

    Article  CAS  Google Scholar 

  56. C. Kittel, Introduction to solid state physics, 8th edn. (Wiley, New York, 2005)

    Google Scholar 

  57. Ł Dubiel, M. Kuzma, I. Stefaniuk, G. Wisz, A. Wal, Shape effect in FMR of Ni-Co-Mn-In layers obtained by pulsed laser deposition. EPJ Web Conf. 133, 02005 (2017). https://doi.org/10.1051/epjconf/201713302005

    Article  CAS  Google Scholar 

  58. R. Singh, S. Saipriy, FMR studies of [SnO2/Cu-Zn ferrite] multilayers, in Ferromagnetic Resonance—Theory and Applications. ed. by O. Yaln (InTech, London, 2013), pp.111–146

    Google Scholar 

  59. M. Lassri, H. Salhi, R. Moubah, H. Lassri, Spin-wave excitations and magnetism of sputtered Fe/Au multilayers. Bull. Mater. Sci. 39, 1085–1089 (2016)

    Article  CAS  Google Scholar 

  60. W. Alayo, F. Pelegrini, E. Baggio-Saitovitch, Ferromagnetic resonance study of sputtered NiFe/V/NiFe heterostructures. J. Magn. Magn. Mater. 377, 104–110 (2015). https://doi.org/10.1016/j.jmmm.2014.10.057

    Article  CAS  Google Scholar 

  61. M.T. Johnson, J.J. de Vries, N.W.E. McGee, J. de aanStegge, F.J.A. den Broeder, Orientational dependence of the interface magnetic anisotropy in epitaxial Ni/Co/Ni sandwiches. Phys. Rev. Lett. 69, 3575–3578 (1992). https://doi.org/10.1103/PhysRevLett.69.3575

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Some of the measurements performed at the Central facility of Industrial Research & Consultancy Centre (IRCC) and Sophisticated Analytical Instrument Facility (SAIF) at IIT Bombay are acknowledged.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed equally for the studies and for writing of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to M. Senthil Kumar.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose. Also, the authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, D., Senthil Kumar, M. Study of magnetic anisotropy in Si/Ni multilayers by static and dynamic magnetization processes. J Mater Sci: Mater Electron 33, 24942–24953 (2022). https://doi.org/10.1007/s10854-022-09203-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09203-8

Navigation