Skip to main content
Log in

Optical characterizations of Carmine micro-stain thin films and photovoltaic properties of Carbon/Carmine-μ/p-Si/Al for analog–digital conversion applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This experimental work introduces the fast processing of Carmine µ-stain/p-Si(111) Organic/Inorganic interfaces for light-harvesting and photovoltaic applications. The optical constants of Spin-coated Carmine µ-stain films were investigated using various film thicknesses (from 95 to 237 nm). The characteristic transition of the fabricated films is indirect, with \({E}_{g}^{Op}\)~1.68 eV and fundamental bandgap ~ 3.67 eV. The fabricated films depicted a dispersive disposal trend with a conservative peak position and distribution. The estimated rate d[Tanδ]/d[hυ] for the dissipation factor reveals two triggering values in the visible region at hυ ~ 1.94 and 5.1 eV, with transparency ~ 50% in the range visible and IR-regions with high absorption coefficient. The spin-coated Carmine µ-stain films showed excellent experimental Carmine µ-stain films/p-Si(111) organic/Inorganic interface with a stable repeatability characteristic rectification ratio and ideality factor ~ 1428 and 3.7, respectively. In application, the fabricated Carmine µ-stain/p-Si(111)/Al devices are coated with a small conductive carbon past (as a collecting electrode) to examine the current–voltage behaviors in dark and illuminating environments. The fabricated devices revealed a photovoltaic effect with an open voltage of 0.1 to 0.32 V. The monitored ISC is increased from 24 nA to 0.1 µA as the incident radiant varies from 10 to 30 mW/cm2, respectively. The extracted microelectronic parameters, such as the SNR and LDR photodetector ratios, revealed a linear stable response with the applied reversed voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article. All data generated or analyzed during this study are included in this article.

References

  1. F.L.C. Baranyovits, Cochineal carmine: an ancient dye with a modern role. Endeavour 2, 85 (1978)

    Article  CAS  Google Scholar 

  2. M.E. Borges, R.L. Tejera, L. Díaz, P. Esparza, E. Ibáñez, Natural dyes extraction from cochineal (Dactylopius coccus) New extraction methods. Food Chem. 132(15), 1855 (2012)

    Article  CAS  Google Scholar 

  3. L. Loguercio, C. Alves, A. Thesing, J. Ferreira, Enhanced electrochromic properties of a polypyrrole–indigo carmine–gold nanoparticles nanocomposite. Phys. Chem. Chem. Phys. 17(2), 1234–1240 (2015)

    Article  CAS  Google Scholar 

  4. A.M. Nawar, I.S. Yahia, Fabrication and characterization of anthracene thin films for wide scale organic optoelectronic applications based on linear/nonlinear analyzed optical dispersion parameters. Opt. Mater. 70, 1–10 (2017)

    Article  CAS  Google Scholar 

  5. A.M. Nawar, M.M. Makhlouf, Electrical and photovoltaic responses of an Au/Coumarin 337/n-Si/Sb-Au hybrid organic-inorganic solar cell. J. Elec. Mater. (2019). https://doi.org/10.1007/s11664-019-07359-4

    Article  Google Scholar 

  6. M.M. El-Nahass, H.M. Abd El-Khalek, A.M. Nawar, Structural and optical characterizations of Ni (II) tetraphenyl porphyrin thin films, eur. Phys. J. Appl. Phys. 57, 30201 (2012). https://doi.org/10.1051/epjap/2012110280

    Article  CAS  Google Scholar 

  7. A.M. Nawar, Fast processed crystalline methyl violet-6B thin films for optimizing the light-harvesting characteristics of Ag/methyl violet 6B/p-Si/Al solar cells. Appl. Phys. A 125, 210 (2019)

    Article  CAS  Google Scholar 

  8. M.M. El-Nahass, A.F. El-Deeb, H.S. Metwally, A. Hassanien, Influence of annealing on the optical properties of 5,10,15,20-tetraphenyl-21H, 23H-porphine iron (III) chloride thin films. Mater. Chem. Phys. 125(1–2), 247–251 (2011). https://doi.org/10.1016/j.matchemphys.2010.09.017

    Article  CAS  Google Scholar 

  9. M.M. El-Nahass, H.S. Metwally, H.E.A. El-Sayed, A. Hassanien, Electrical and photovoltaic properties of FeTPPCl/p-Si heterojunction. Synt. Met. 161, 2253 (2011). https://doi.org/10.1016/j.synthmet.2011.08.030

    Article  CAS  Google Scholar 

  10. A.A.M. Farag, I.S. Yahia, Structural, absorption and optical dispersion characteristics of rhodamine B thin films prepared by drop casting technique. Opt. Commun. (2010). https://doi.org/10.1016/j.optcom.2010.06.081

    Article  Google Scholar 

  11. G.F. Salem, E.A.A. El-Shazly, A.A.M. Farag, I.S. Yahia, Optical and microelectronic analysis of rhodamine B-based organic Schottky diode: a new trend application. Appl. Phys. A 124, 744 (2018). https://doi.org/10.1007/s00339-018-2151-y

    Article  CAS  Google Scholar 

  12. R. Otero, A.L. Vázquez de Parga, J.M. Gallego, Electronic, structural, and chemical effects of charge-transfer at organic/inorganic interfaces. Surf. Sci. Rep. 72, 105–145 (2017)

    Article  CAS  Google Scholar 

  13. A. Tataroglu, H. Tuncer, A.A. Al-Ghamdi, A. Dere, B. Arif, S. Yol, N. Ozdemir, F. El-Tantawy, F. Yakuphanoglu, Graphene–cobalt phthalocyanine based on optoelectronic device for solar panel tracking systems. Synth. Met. 206, 15–23 (2015)

    Article  CAS  Google Scholar 

  14. H.M. Zeyada, M.M. El-Nahass, M.M. El-Shabaan, Photovoltaic properties of the 4H-pyrano[3,2-c]quinoline derivatives and their applications in organic–inorganic photodiode fabrication. Synth. Met. 220, 102 (2016)

    Article  CAS  Google Scholar 

  15. A.A. Al-Ghamdi, A.M. Nawar, S.J. Farid El-Tantawy, A.A. Yaghmour, Design and electrical characterization of Au/Anthracene/p-Si/Al organic/inorganic heterojunction. J. Alloys Compd. 622, 243–249 (2015)

    Article  CAS  Google Scholar 

  16. S. Awuku, S.J. Bradley, K.P. Ghiggino, R.P. Steer, L.S. Amy, J.M. White, C. Yeow, Photophysics and spectroscopy of 1,2-Benzazulene. Chem. Phys. Lett. 784, 139114 (2021)

    Article  CAS  Google Scholar 

  17. K. Seshan, in Handbook of Thin Film Deposition. ed. by K. Seshan (Elsevier, Amsterdam, 2018)

    Google Scholar 

  18. J.B. Yadav, R.K. Puri, V. Puri, Appl. Surf. Sci. 253, 8474 (2007)

    Article  CAS  Google Scholar 

  19. M.M. El-Nahassa, K.F. Abd-El-Rahman, A.A. Al-Ghamdi, A.M. Asiri, Optical properties of thermally evaporated tin-phthalocyanine dichloride thin films, SnPcCl2. Phys. B 344, 398 (2004)

    Article  Google Scholar 

  20. O.S. Heavens, in Physics of thin films. ed. by G. Hass, R. Thus (Academic, New York, 1964), p.193

    Google Scholar 

  21. M.M. El-Nahass, J. Mater. Sci. 27, 6592 (1992)

    Google Scholar 

  22. M.M. El-Nahass, A.A. Atta, H.E.A. El-Sayed, E.F.M. El-Zaidia, Structural and optical properties of thermal evaporated magnesium phthalocyanine (MgPc) thin films. Appl. Surf. Sci. 254, 2458–2465 (2008)

    Article  CAS  Google Scholar 

  23. J. Tauc (ed.), Amorphous and liquid semiconductors (Plenum, New York, 1976)

    Google Scholar 

  24. G.D. Cody, M.J.I. Pankove (eds.), Semiconductors and semimetals, Part B, vol. 21 (Academic Press, New York, 1984), pp.11–79

    Google Scholar 

  25. M.M. El-Nahass, H.A. Zayed, E.E. Elgarhy, A.M. Hassanien, Radiat. Phys. Chem. 139, 173–178 (2017)

    Article  CAS  Google Scholar 

  26. N. Kenny, C.R. Kannewurf, D.H. Whitmore, J. Phys. Chem. Solids 27, 1237 (1966)

    Article  CAS  Google Scholar 

  27. S.H. Wemple, M. DiDomenico, Behavior of the electronic dielectric constant in covalent and ionic materials. Phys. Rev. B 3, 1338 (1971)

    Article  Google Scholar 

  28. S.H. Wemple, Phys. Rev. B 7, 3767 (1973)

    Article  CAS  Google Scholar 

  29. T.C. Girisun, S. Dhanuskodi, Linear and nonlinear optical properties of tris thiourea zinc sulphate single crystals. Cryst. Res. Technol. 44(12), 1297–1302 (2009)

    Article  CAS  Google Scholar 

  30. J.I. Pankove, Optical processes in semiconductors (Dover Publication, Inc., New York, Courier Corporation, 2012)

    Google Scholar 

  31. G.D. Mahan, K.R. Subbaswamy, Local density theory of polarizability (Plenum Press, New York, 1990)

    Book  Google Scholar 

  32. H. Tichá, L. Tichý, J. Optoelectron. Adv. Mater. 4(2), 381 (2002)

    Google Scholar 

  33. A.M. Nawar, I.S. Yahia, M.S. Al-Kotb, Stretchable memory loops and photovoltaic characteristics of organic-inorganic solid-state iron (III) chloride tetraphenyl porphyrin /p-Si(111) nanostructure devices. Sens. Actuators A: Phys. 318, 112511 (2021)

    Article  CAS  Google Scholar 

  34. A.M. Nawar, M.M. Makhlouf, Au-nanoparticles doped SiO2 interfacial layer to promote the photovoltaic characteristics of Au/p-Si/Al solar cells. J. Alloys Compd. 767, 1271–1281 (2018)

    Article  CAS  Google Scholar 

  35. A.M. Nawar, M. Abd-Elsalam, A.M. El-Mahalawy, M.M. El-Nahass, Analyzed electrical performance and induced interface passivation of fabricated Al/NTCDA/p-Si MIS–Schottky heterojunction. Appl. Phys. A 126, 113 (2020). https://doi.org/10.1007/s00339-020-3289-y

    Article  CAS  Google Scholar 

  36. T.M. Nahir, in Impedance spectroscopy: theory, experiment, and applications. ed. by E. Barsoukov, J.R. Macdonald (Wiley, Hoboken, NJ, 2005)

    Google Scholar 

  37. E.H. Nicollian, A. Goetzberger, Appl. Phys. Lett. 7, 216–219 (1965)

    Article  CAS  Google Scholar 

  38. H.M. Zeyada, A.A. Habashi, M.M. Makhlouf, A.S. Behairy, M.A. Nasher, Fabrication, electrical transport mechanisms and photovoltaic properties of methyl violet 2B/n-Si hybrid organic/inorganic solar cell. Microelectron. Engin. 163, 134–139 (2016)

    Article  CAS  Google Scholar 

  39. S.K. Cheung, N.W. Cheung, Extraction of Schottky diode parameters from forward current-voltage characteristics. Appl. Phys. Lett. 49(2), 85–87 (1986)

    Article  CAS  Google Scholar 

  40. D. Yang, D. Ma, Development of organic semiconductor photodetectors: from mechanism to applications. Adv. Opt. Mater. 7, 1800522–1800544 (2019)

    Article  Google Scholar 

  41. Y.N. Chang, Cubic composite sensor with photodiodes for tracking solar orientation. J. Nanomater. (2013). https://doi.org/10.1155/2013/619105

    Article  Google Scholar 

  42. A.M. Nawar, A.M. El-Mahalawy, Heterostructure device based on Brilliant Green nanoparticles–PVA/ p-Si interface for analog–digital converting dual-functional sensor applications. J. Mater. Sci.: Mater. Electron. 31, 3256–3273 (2020)

    CAS  Google Scholar 

  43. P. Kumar, S.C. Jain, H. Kumar, S. Chand, V. Kumar, Effect of illumination intensity and temperature on open circuit voltage in organic solar cells. Appl. Phys. Lett. 94, 183505 (2009)

    Article  Google Scholar 

  44. W. Deng, H. Huang, H. Jin, W. Li, X. Chu, D. Xiong, W. Yan, F. Chun, M. Xie, C. Luo, L. Jin, C. Liu, H. Zhang, W. Deng, W. Yang, All-sprayed-processable, large area, and flexible perovskite/MXene-based photodetector arrays for photo communication. Adv. Optic. Mater. 7, 1801521 (2019)

    Article  Google Scholar 

  45. N. Kamarulzaman, M.F. Kasim, N.F. Chayed, Elucidation of the highest valence band and lowest conduction band shifts using XPS for ZnO and Zn 0.99 Cu 0.01 O band gap changes. Results Phys. 6, 217–230 (2016)

    Article  Google Scholar 

  46. Z. Wan, Mu. Haoran, Z. Dong, Hu. Sigui, Yu. Wenzhi, S. Lin, S. Mokkapati, Self-powered MoSe2/ZnO heterojunction photodetectors with current rectification effect and broadband detection. Mater. Des. 212, 110185 (2021)

    Article  CAS  Google Scholar 

  47. P. Liu, Pu. Yong, High-performance photodetector based on few-layered 2D MnPSe3. Results Phys. 29, 104750 (2021)

    Article  Google Scholar 

  48. N.P. Perea-Lopez, A.L. Elias, A. Berkdemir, A.C. Beltran, H.R. Gutierrez, S. Feng et al., Photosensor device based on fewlayered WS2 films. Adv. Funct. Mater. 23, 5511 (2013)

    Article  CAS  Google Scholar 

  49. S.P. Abid, C.M. Julien, S.S. Islam, WS2 quantum dots on e-textile as a wearable UV photodetector: how well reduced graphene oxide can serve as a carrier transport medium. ACS Appl. Mater. Interfaces 12(35), 39730 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through the research group project under grant number (R.G.P.2/216/43).

Funding

The funding was provided by King Khalid University Grant number: R.G.P.2/216/43.

Author information

Authors and Affiliations

Authors

Contributions

AMN: Idea- Methodology—Experimental Characterizations-data analysis— reviewing, SAA: Investigation-writing, ISY: Thin films preparation, HYZ: writing, LA: Investigation- data analysis—writing, YTA: Investigation- data analysis—writing. ESY: Reviewing.

Corresponding author

Correspondence to Ahmed M. Nawar.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and publication of this article.

Ethical approval

The stated authors of the work have read the content and approved the submission of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nawar, A.M., Alderhami, S.A., Yahia, I.S. et al. Optical characterizations of Carmine micro-stain thin films and photovoltaic properties of Carbon/Carmine-μ/p-Si/Al for analog–digital conversion applications. J Mater Sci: Mater Electron 33, 24769–24784 (2022). https://doi.org/10.1007/s10854-022-09184-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09184-8

Navigation