Skip to main content

Advertisement

Log in

MXene-coated flexible PVDF membrane as wearable strain sensor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Strain sensors need high sensitivity and good mechanical property for wearable electronics applications. Recently discovered MXenes (transition metal carbide/nitride/carbonitride) are a class of 2D materials and these exhibit very good mechanical properties and high electrical conductivity. These 2D materials find highly promising applications as sensors, EMI shielding, energy storage devices, etc. In this work, the Ti3C2Tx-based high-purity MXenes were prepared by in situ HF etching method. Under the studied conditions, highly delaminated single-phase Ti3C2Tx MXene nanosheets were obtained. The materials were characterized using X-ray diffraction and SEM techniques. The Ti3C2Tx was coated on to PVDF membrane through a simple vacuum-assisted filtration method. This flexible PVDF membrane coated with Ti3C2Tx MXene exhibits very low resistance of ~ 44 Ω. A wearable prototype strain sensor was fabricated using the Ti3C2Tx-coated PVDF membrane and change in resistance with respect to the finger bending/stretching was studied. Easily fabricable highly conductive and flexible Ti3C2Tx-coated PVDF membrane is promising as strain sensors in wearable electronics to analyze various motions of body parts for health monitoring applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. A. Chortos, J. Liu, Z. Bao, Nat. Mater. 15, 937 (2016)

    Article  CAS  Google Scholar 

  2. Z. Lei, Q. Wang, S. Sun, W. Zhu, P. Wu, Adv. Mater. 29, 1700321 (2017)

    Article  Google Scholar 

  3. M.A. Darabi, A. Khosrozadeh, R. Mbeleck, Y. Liu, Q. Chang, J. Jiang, J. Cai, Q. Wang, G. Luo, M. Xing, Adv. Mater. 29, 1700533 (2017)

    Article  Google Scholar 

  4. J.Y. Sun, C. Keplinger, G.M. Whitesides, Z. Suo, Adv. Mater. 26, 7608 (2014)

    Article  CAS  Google Scholar 

  5. M. Ghidiu, M.R. Lukatskaya, M.Q. Zhao, Y. Gogotsi, M.W. Barsoum, Nature 516, 79 (2014)

    Article  Google Scholar 

  6. M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, Adv. Mater. 26(7), 992 (2014)

    Article  CAS  Google Scholar 

  7. M. Naguib, O. Mashtalir, J. Carlie, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, M.W. Barsoum, ACS Nano 6, 1322 (2012)

    Article  CAS  Google Scholar 

  8. M. Naguib, Y. Gogotsi, Acc. Chem. Res. 48(1), 128 (2015)

    Article  CAS  Google Scholar 

  9. C. Pang, G.Y. Lee, T.I. Kim, S.M. Kim, H.N. Kim, S.H. Ahn, K.Y. Suh, Nat. Mater. 11, 795 (2012)

    Article  CAS  Google Scholar 

  10. M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark, S. Sin, Y. Gogotsi, Chem. Mater. 29, 7633 (2017)

    Article  CAS  Google Scholar 

  11. N. Annabi, A. Tamayol, J.A. Uquillas, M. Akbari, L.E. Bertassoni, C. Cha, G. Camci-Unal, M.R. Dokmeci, N.A. Peppas, A. Khademhosseini, Adv. Mater. 26, 85 (2014)

    Article  CAS  Google Scholar 

  12. Y. Chen, X. Xie, X. Xin, Z.R. Tang, Y.J. Xu, ACS Nano 13(1), 295 (2019)

    Article  CAS  Google Scholar 

  13. C. Chen, X.Q. Xie, B. Anasori, A. Sarycheva, T. Makaryan, M.Q. Zhao, P. Urbankowski, L. Miao, J.J. Jiang, Y. Gogotsi, Angew. Chem. Int. Ed. 57, 1846 (2018)

    Article  CAS  Google Scholar 

  14. S. Yang, P. Zhang, F. Wang, A.G. Ricciardulli, M.R. Lohe, P.W.M. Blom, X. Feng, Angew. Chem. Int. Ed. Engl. 57, 15491 (2018)

    Article  CAS  Google Scholar 

  15. D. Zhao, M. Clites, G.B. Ying, S. Kota, J. Wang, V. Natu, X. Wang, E. Pomerantseva, M.H. Cao, M.W. Barsoum, Chem. Commun. 54, 4533 (2018)

    Article  CAS  Google Scholar 

  16. M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M.W. Barsoum, Adv. Mater. 23, 4248 (2011)

    Article  CAS  Google Scholar 

  17. X. Li, F. Ran, F. Yang, J. Long, L. Shao, Trans. Tianjin Univ. 27, 217 (2021)

    Article  CAS  Google Scholar 

  18. X. Yuan, M. Zhang, Y. Wu, Sensors Mater. 32(12), 4047 (2020)

    Article  CAS  Google Scholar 

  19. Y. Ma, N. Liu, L. Li, X. Hu, Z. Zou, J. Wang, S. Luo, Y. Gao, Nat. Commun. 8, 1207 (2017)

    Article  Google Scholar 

  20. Q. Yang, Y. Wang, X. Li, H. Li, Z. Wang, Z. Tang, L. Ma, F. Mo, C. Zhi, Energy Environ. Mater. 1(4), 183 (2018)

    Article  Google Scholar 

  21. H. An, T. Habib, S. Shah, H. Gao, M. Radovic, M.J. Green, J.L. Lutkenhaus, Sci. Adv. 4(3), 0118 (2018)

    Article  Google Scholar 

  22. L. Li, X. Fu, S. Chen, S. Uzun, A.S. Levitt, C.E. Shuck, W. Han, Y. Gogotsi, ACS Appl. Mater. Interfaces 12(13), 15362 (2020)

    Article  CAS  Google Scholar 

  23. Y. Cheng, Y. Ma, L. Li, M. Zhu, Y. Yue, W. Liu, L. Wang, S. Jia, C. Li, T. Qi, J. Wang, Y. Gao, ACS Nano 14(2), 2145 (2020)

    Article  CAS  Google Scholar 

  24. K. Rasool, K.A. Mahmoud, D.J. Johnson, M. Helal, G.R. Berdiyorov, Y. Gogotsi, Sci. Rep. 7, 1598 (2017)

    Article  Google Scholar 

  25. A. Lipatov, M. Alhabed, M.R. Lukatskya, A. Boson, Y. Gogotsi, A. Sinitskii, Adv. Electron Mater. 2(12), 160025 (2016)

    Google Scholar 

  26. S. Li, W. Gu, Y. Sun, D. Zou, W. Jing, Ceram. Int. 47(21), 29930 (2021)

    Article  CAS  Google Scholar 

  27. G. Li, L. Tan, Y. Zhang, B. Wu, L. Li, Langmuir 33, 9000 (2017)

    Article  CAS  Google Scholar 

  28. R. Bari, D. Parviz, F. Khabaz, C.D. Klaassen, S.D. Metzler, M.J. Hansen, R. Khare, M.J. Green, Phys. Chem. Chem. Phys. 17, 9383 (2022)

    Article  Google Scholar 

  29. M. Naguib, R.R. Unocic, B.L. Armstrong, J. Nanda, Dalton Trans. 44, 9353 (2015)

    Article  CAS  Google Scholar 

  30. V.M.H. Ng, H. Huang, K. Zhou, P.S. Lee, W. Que, J.Z. Xu, L.B. Kong, J. Mater. Chem. A 5, 3039 (2017)

    Article  Google Scholar 

  31. O. Mashtalir, M. Naguib, B. Dyatkin, Y. Gogotsi, M.W. Barsoum, Mater. Chem. Phys. 1(39), 147 (2013)

    Article  Google Scholar 

  32. Y.L. Huang, S.W. Bian, J. Mater. Chem. A 9, 21347 (2021)

    Article  CAS  Google Scholar 

  33. J. Saththasivam, K. Wang, W. Yiming, Z. Liu, K.A. Mahmoud, RSC Adv. 9, 16296 (2019)

    Article  CAS  Google Scholar 

  34. H.E. Karahan, K. Goh, C.J. Zhang, E. Yang, C. Yildırım, C.Y. Chuah, M.G. Ahunbay, J. Lee, ŞB.T. Ersolmaz, Y. Chen, T.H. Bae, Adv. Mater. 32, 1906697 (2020)

    Article  CAS  Google Scholar 

  35. A. Lipatov, H. Lu, M. Alhabeb, B. Anasori, A. Gruverman, Y. Gogotsi, A. Sinitskii, Sci. Adv. 4, 491 (2018)

    Article  Google Scholar 

  36. M. Ha, S. Lim, H. Ko, J. Mater. Chem. B 6, 4043 (2018)

    Article  CAS  Google Scholar 

  37. Y. Yang, L. Shi, Z. Cao, R. Wang, J. Sun, Adv. Funct. Mater. 29, 1807882 (2019)

    Article  Google Scholar 

  38. L. Liu, L. Wang, X. Liu, W. Yuan, M. Yuan, Q. Xia, Q. Hu, A. Zhou, Nanomater. 11, 889 (2021)

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the study. TR, KGV, and UMUS performed material preparation, data collection, and analysis. TR wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Radhika Thankappan.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

The data of the manuscript well comply with the ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thankappan, R., Vasanthakumari, K.G. & Uzma Sulthana, U.M. MXene-coated flexible PVDF membrane as wearable strain sensor. J Mater Sci: Mater Electron 33, 24542–24549 (2022). https://doi.org/10.1007/s10854-022-09165-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09165-x

Navigation