Skip to main content
Log in

Reduction of dielectric loss of ethylene propylene diene monomer (EPDM) with high barrier graphene (HBG) modified by heptadecafluoro-decyl-triethoxy silane

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, 1-wt% fluorinated couple agents were firstly used to modify the surface of high barrier graphene platelets (HBG). Then the modified HBG were incorporated into ethylene propylene diene monomer (EPDM). Due to high lamellar size/thickness ratio (about 3300), untreated HBG (HBG-un) increase the complex viscosity of EPDM composites. The surface modification of HBG by heptadecafluoro-decyl-triethoxy silane (17F) can reduce the surface energy of HBG and then decrease the complex viscosity of EPDM/HBG-un from 21,000 to 13,000 Pa s (about 40% decrease) at 1.7 Hz. Due to the increased physical entanglement and C=C bonds, HBG-un can increase the tensile and tear strength of EPDM control by about 3 and 2 times, respectively. The surface modification of 17F can slightly reduce the tensile and tear strength of EPDM/HBG-un by 9% and 8%, respectively. HBG-un can increase the thermal conductivity and dielectric constant of EPDM control by 17% and 2.8 times increase, respectively. Surface modification of 1-wt% 17F can remarkably reduce the dielectric loss of EPDM/HBG-un by 50% at 20 MHz, slightly affecting the dielectric constant and thermal conductivity. In addition, HBG-un can decrease the volume and surface resistivity of EPDM control by 2 and 1 order of magnitude, respectively, while 1-wt% 17F can both increase the surface and volume resistivity of EPDM by one order of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. J. Wang, W. Zhang, Q. Yin, J. Mater. Sci. 31, 125 (2020)

    Google Scholar 

  2. A.R. Marlinda, N.H. Kamaruddin, A.W. Fadilah, Polym. Eng. Sci. 61, 1476 (2021)

    Article  CAS  Google Scholar 

  3. J. Su, J. Zhang, RSC Adv. 96, 78448 (2015)

    Article  Google Scholar 

  4. W. Dong, L. He, C. Chen, J. Mater. Sci. 33, 1817 (2022)

    CAS  Google Scholar 

  5. J. Su, J. Zhang, Plast. Rubber Compos. 45, 127 (2016)

    Article  CAS  Google Scholar 

  6. J. Su, J. Zhang, J. Mater. Sci. 28, 5250 (2017)

    CAS  Google Scholar 

  7. J. Su, J. Zhang, Composites B 112, 148 (2017)

    Article  CAS  Google Scholar 

  8. J. Su, C. Li, J. Mater. Sci. 32, 9065 (2021)

    CAS  Google Scholar 

  9. Y. Zhu, S. Murali, W. Cai, Adv. Mater. 22, 3906 (2010)

    Article  CAS  Google Scholar 

  10. Ö.B. Mergen, J. Compos. Mater. 55, 4347 (2022)

    Article  Google Scholar 

  11. M. Rahman, G. Tong, N. Kamaruddin, J. Mater. Sci. 30, 12888 (2019)

    Google Scholar 

  12. S. Wu, J. Wang, J. Shao, ACS Appl. Mater. Interface 9, 28887 (2017)

    Article  CAS  Google Scholar 

  13. G. Yin, Y. Yang, F. Song, ACS Appl. Mater. Interface 9, 5237 (2017)

    Article  CAS  Google Scholar 

  14. S. Wageh, A. Ghamdi, A. Numan, J. Iqbal, J. Mater. Sci. 31, 8127 (2020)

    CAS  Google Scholar 

  15. H. Salavagione, G. Martínez, G. Ellis, Macromol. Rapid. Commun. 32, 1771 (2011)

    Article  CAS  Google Scholar 

  16. M. Itkis, P. Ramesh, C. Berger, J. Am. Chem. Soc. 131, 1336 (2009)

    Article  Google Scholar 

  17. A. Krainoi, C. Kummerlöwe, Y. Nakaramontri, Polym. Test. 66, 122 (2018)

    Article  CAS  Google Scholar 

  18. A. Shakun, M. Poikelispää, A. Das, Polym. Eng. Sci. 58, 395 (2018)

    Article  CAS  Google Scholar 

  19. H.A. Qasem, M.R. Aouad, H.A. Al-Abdulkarim, J. Mol. Struct. 1264, 133263 (2022)

    Article  CAS  Google Scholar 

  20. A.M. Abu-Dief, R.M. El-khatib, F.S. Aljohani, J. Mol. Struct. 1242, 130693 (2021)

    Article  CAS  Google Scholar 

  21. J. Su, S. Chen, J. Zhang, J. Appl. Polym. Sci. 122, 3277 (2011)

    Article  CAS  Google Scholar 

  22. J. Su, S. Chen, J. Zhang, J. Compos. Mater. 46, 589 (2012)

    Article  CAS  Google Scholar 

  23. M. Ishiharaa, A. Koshiob, A. Nakayama, Mater. Lett. 61, 1068 (2007)

    Article  Google Scholar 

  24. T. Chowdhury, R. Hidayat, H. Kim, Appl. Surf. Sci. 554, 149481 (2007)

    Article  Google Scholar 

  25. J. Trinidad, B. Amoli, W. Zhang, J. Mater. Sci. 27, 12955 (2019)

    Google Scholar 

  26. K.H. Rahiman, G. Unnikrishnan, A. Sujith, Mater. Lett. 59, 633 (2005)

    Article  Google Scholar 

  27. A. Singh, B. Panda, S. Mohanty, Polym. Adv. Technol. 28, 1851 (2017)

    Article  CAS  Google Scholar 

  28. H. Wu, W. Zhou, Q. Liu, J. Appl. Polym. Sci. 139, 51838 (2022)

    Article  CAS  Google Scholar 

  29. Z. Bo, W. Zhu, W. Ma, Adv. Mater. 25, 5799 (2013)

    Article  CAS  Google Scholar 

  30. C. Teng, C. Ma, C. Lu, Carbon 49, 5107 (2011)

    Article  CAS  Google Scholar 

  31. Y. Zhao, X.D. Jia, L. Li, Polym. Sci. Ser. B 64, 229 (2022)

    Article  Google Scholar 

  32. S. Pongdhorn, S. Chakrit, T. Uthai, Polym. Test. 23, 871 (2004)

    Article  Google Scholar 

  33. C. Nakason, P. Wannavilai, A. Kaesaman, Polym. Test. 25, 34 (2006)

    Article  CAS  Google Scholar 

  34. X. Liu, X. Hong, B. Liang, J. Polym. Res. 29, 146 (2022)

    Article  CAS  Google Scholar 

  35. X. Xiang, Y. Zhu, M. Yin, J. Mater. Sci. 57, 3280 (2022)

    Article  CAS  Google Scholar 

  36. N. Dishovsky, F. Tantawy, R. Dimitrov, Polym. Test. 23, 69 (2004)

    Article  CAS  Google Scholar 

  37. R. Salunkhe, Y. Lee, K. Chang, Chem. Eur. J. 20, 13838 (2014)

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the Nanjing Vocational University of Industry Technology Scientific Research Foundation for the introduction of talent (YK19-01-02).

Author information

Authors and Affiliations

Authors

Contributions

JS contributed to the study conception, design, material preparation, data collection, and analysis. JS wrote the first draft of the manuscript, read and approved the final manuscript.

Corresponding author

Correspondence to Jun Su.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

This study has no disclosure of potential conflicts of interest. The research involving no Human Participants and/or Animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, J. Reduction of dielectric loss of ethylene propylene diene monomer (EPDM) with high barrier graphene (HBG) modified by heptadecafluoro-decyl-triethoxy silane. J Mater Sci: Mater Electron 33, 24519–24527 (2022). https://doi.org/10.1007/s10854-022-09163-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09163-z

Navigation