Skip to main content

Advertisement

Log in

Facile synthesis of polyaniline-supported halide perovskite nanocomposite (KCuCl3/PANI) as potential electrode material for supercapacitor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Metal halide perovskites have gained significant interest for next-generation supercapacitor electrode materials because of their high electronic and ionic conductivity. The researchers have been mainly focused on halide perovskites materials for solar cells and light-emitting diodes, but their use in energy storage applications is found limited. Also, the conducting polymer, specifically polyaniline (PANI), is an efficient material for increasing the pseudocapacitive properties of electrode materials. Here, we have synthesized potassium copper chloride (KCuCl3) and PANI-based halide perovskites composites by solvothermal and antisolvent route in the ambient environment and determined the physical as well as the electrochemical properties, that are strongly dependent on the preparation method and PANI. Monoclinic phase of KCuCl3 was confirmed by XRD diffraction spectra and EDX analysis confirm the existence of K, Cu, Cl, and C elements in prepared samples. The BET results showed the higher surface area (13.538 m2/g), pore size (14.56 nm), and pore volume (0.0038 cc/g) of the electrode synthesized by the solvothermal method. Our electrochemical measurements results showed that PANI-based electrodes have a higher specific capacitance of 1757 and 1297 F/g than simple electrodes in 1.0 M KOH electrolyte at 5 mV/s. Furthermore, PANI modified electrodes exhibited substantial enhancement in cyclic stability over 97 and 96% after 3000 cycles. The PANI-based electrodes (R1P and R2P) also have high specific capacitance (2434, 1183 F/g), energy density (438.12, 212.94 Wh/Kg), and power density (1.6, 1.55 W/kg) at a current density of 0.2 A/g. Moreover, superficial, and scalable synthesis of metal halide perovskite and PANI-based composites electrodes can be used efficiently for next-generation supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data will be available from the authors upon reasonable request.

References

  1. P.Z. Grossman, Energy Policy 77, 56 (2015)

    Article  Google Scholar 

  2. C.B. Ong, A.W. Mohammad, L.Y. Ng, Environ. Sci. Pollut. Res. 26, 33856 (2019)

    Article  CAS  Google Scholar 

  3. M. Maqbool, G. Rehman, L. Ali, M. Shafiq, R. Iqbal, R. Ahmad, T. Khan, S. Jalali-Asadabadi, M. Maqbool, I. Ahmad, J. Alloys Compd. 705, 828 (2017)

    Article  Google Scholar 

  4. X. Ke, Y. Wang, G. Ren, C. Yuan, Energy Storage Mater. 26, 313 (2020)

    Article  Google Scholar 

  5. R.M. Dell, P.T. Moseley, D.A.J. Rand, Batteries and Supercapacitors for Use in Road Vehicles (Elsevier, 2014)

    Book  Google Scholar 

  6. S. Arunachalam, B. Kirubasankar, D. Pan, H. Liu, C. Yan, Z. Guo, S. Angaiah, Green Energy Environ. 5(3), 259–273 (2020)

    Article  Google Scholar 

  7. S. Liu, L. Wei, H. Wang, Appl. Energy 278, 115436 (2020)

    Article  CAS  Google Scholar 

  8. I. Hussain, C. Lamiel, M. Ahmad, Y. Chen, S. Shuang, M.S. Javed, Y. Yang, K. Zhang, J. Energy Storage 44, 103405 (2021)

    Article  Google Scholar 

  9. K. Poonam, A.A. Sharma, S.K. Tripathi, J. Energy Storage 21, 801–825 (2019)

    Article  Google Scholar 

  10. A. González, E. Goikolea, J.A. Barrena, R. Mysyk, Renew. Sustain. Energy Rev. 58, 1189 (2016)

    Article  Google Scholar 

  11. M.N. Sakib, S. Ahmed, S.M.S.M. Rahat, S.B. Shuchi, J. Energy Storage 44, 103322 (2021)

    Article  Google Scholar 

  12. R.B. Choudhary, S. Ansari, B. Purty, J. Energy Storage 29, 101302 (2020)

    Article  Google Scholar 

  13. M. Zhi, C. Xiang, J. Li, M. Li, N. Wu, Nanoscale 5, 72 (2013)

    Article  CAS  Google Scholar 

  14. W. Zhang, G.E. Eperon, H.J. Snaith, Nat Energy (2016). https://doi.org/10.1038/nenergy.2016.48

    Article  Google Scholar 

  15. R. Kumar, P.S. Shukla, G.D. Varma, M. Bag, Electrochim. Acta 398, 1 (2021)

    Article  Google Scholar 

  16. Q. Guo, J. Yuan, Y. Tang, C. Song, D. Wang, Electrochim. Acta 367, 137525 (2021)

    Article  CAS  Google Scholar 

  17. S. Thakur, T. Paul, S. Maiti, K.K. Chattopadhyay, Sol. State Sci. 122, 106769 (2021)

    Article  CAS  Google Scholar 

  18. C.R. Dong, Y. Wang, K. Zhang, H. Zeng, EnergyChem. 2, 100026 (2020)

    Article  Google Scholar 

  19. L.E. Oloore, M.A. Gondal, I.K. Popoola, A.J. Popoola, ChemElectroChem 7, 486 (2020)

    Article  CAS  Google Scholar 

  20. J.K. Pious, M.L. Lekshmi, C. Muthu, R.B. Rakhi, V.C. Nair, ACS Omega 2, 5798 (2017)

    Article  CAS  Google Scholar 

  21. P. Maji, A. Ray, P. Sadhukhan, A. Roy, S. Das, Mater. Lett. 227, 268 (2018)

    Article  CAS  Google Scholar 

  22. S.L. Lee, C.J. Chang, Polymers 11(2), 209 (2019)

    Article  Google Scholar 

  23. F. Gao, J. Mu, Z. Bi, S. Wang, Z. Li, Prog. Org. Coat. 151, 106071 (2021)

    Article  CAS  Google Scholar 

  24. J.C. Gabunada, M. Vinothkannan, D.H. Kim, A.R. Kim, D.J. Yoo, Electroanalysis 31, 1524 (2019)

    Article  CAS  Google Scholar 

  25. R. Santhosh Kumar, K. Govindan, S. Ramakrishnan, A.R. Kim, J.S. Kim, D.J. Yoo, Appl. Surf. Sci. 556, 149765 (2021)

    Article  CAS  Google Scholar 

  26. M.B. Poudel, M. Shin, H.J. Kim, Int. J. Hydrogen Energy 46, 474 (2021)

    Article  CAS  Google Scholar 

  27. R. Kannan, A.R. Kim, D.J. Yoo, J. Appl. Electrochem. 44, 893 (2014)

    Article  CAS  Google Scholar 

  28. V.B. Patil, S.G. Pawar, S.L. Patil, A.K. Sood, Orient. J. Chem. 25, 945 (2009)

    CAS  Google Scholar 

  29. N. Kuramoto, A. Tomita, Polymer (Guildf). 38, 3055 (1997)

    Article  CAS  Google Scholar 

  30. P. Dallas, D. Stamopoulos, N. Boukos, V. Tzitzios, D. Niarchos, D. Petridis, Polymer (Guildf). 48, 3162 (2007)

    Article  CAS  Google Scholar 

  31. J. Qiang, Z. Yu, H. Wu, D. Yun, Synth. Met. 158, 544 (2008)

    Article  CAS  Google Scholar 

  32. A.A. Bahgat, S.M. Sayyah, H.M. Abd-Elsalam, Int. J. Polym. Mater. Polym. Biomater. 52, 499 (2003)

    Article  CAS  Google Scholar 

  33. T. Munawar, M.N. ur Rehma, M.S. Nadeem, F. Mukhtar, S. Manzoor, M.N. Ashiq, F. Iqbal, J. Alloys Compd. 885, 160885 (2021)

    Article  CAS  Google Scholar 

  34. T. Munawar, F. Mukhtar, M.S. Nadeem, S. Manzoor, M.N. Ashiq, K. Mahmood, S. Batool, M. Hasan, F. Iqbal, J. Alloys Compd. 898, 162779 (2022)

    Article  CAS  Google Scholar 

  35. M. Naveed ur Rehman, T. Munawar, M.S. Nadeem, F. Mukhtar, A. Maqbool, M. Riaz, S. Manzoor, M.N. Ashiq, F. Iqbal, Ceram. Int. 47, 18497 (2021)

    Article  CAS  Google Scholar 

  36. T. Munawar, S. Yasmeen, F. Hussain, K. Mahmood, A. Hussain, M. Asghar, F. Iqbal, Mater. Chem. Phys. 249, 122983 (2020)

    Article  CAS  Google Scholar 

  37. R. Yogamalar, R. Srinivasan, A. Vinu, K. Ariga, A.C. Bose, Sol. State Commun. 149, 1919 (2009)

    Article  CAS  Google Scholar 

  38. T. Munawar, F. Iqbal, S. Yasmeen, K. Mahmood, A. Hussain, Ceram. Int. 46, 2421 (2020)

    Article  CAS  Google Scholar 

  39. C. M. Pelicano, N. J. Rapadas, and E. Magdaluyo, AIP Conf. Proc. 1901, 020016 (2017)

    Article  CAS  Google Scholar 

  40. M.A. Martin, C.-F. Chen, P.P. Mukherjee, S. Pannala, J.-F. Dietiker, J.A. Turner, D. Ranjan, J. Electrochem. Soc. 162, A991 (2015)

    Article  CAS  Google Scholar 

  41. S. Narayanan, N. Parikh, M.M. Tavakoli, M. Pandey, M. Kumar, A. Kalam, S. Trivedi, D. Prochowicz, P. Yadav, Eur. J. Inorg. Chem. 2021, 1201 (2021)

    Article  CAS  Google Scholar 

  42. A. Ramadan, M. Anas, S. Ebrahim, M. Soliman, A.I. Abou-Aly, Int. J. Hydrogen Energy 45, 16254 (2020)

    Article  CAS  Google Scholar 

  43. A.A. Yadav, A.C. Lokhande, R.B. Pujari, J.H. Kim, C.D. Lokhande, J. Colloid Interface Sci. 484, 51 (2016)

    Article  CAS  Google Scholar 

  44. S.B. Jadhav, D.B. Malavekar, R.N. Bulakhe, U.M. Patil, I. In, C.D. Lokhande, P.N. Pawaskar, Surfaces and Interfaces 23, 101018 (2021)

    Article  CAS  Google Scholar 

  45. T. Munawar, S. Yasmeen, M. Hasan, K. Mahmood, A. Hussain, A. Ali, M.I. Arshad, F. Iqbal 46, 11101 (2020)

    CAS  Google Scholar 

  46. F. Mukhtar, T. Munawar, M.S. Nadeem, S. Batool, M. Hasan, M. Riaz, F. Iqbal, J. Nanostructure Chem. 12, 547 (2022)

    Article  CAS  Google Scholar 

  47. S.A. Delbari, L.S. Ghadimi, R. Hadi, S. Farhoudian, M. Nedaei, A. Babapoor, A. Sabahi Namini, Q. Van Le, M. Shokouhimehr, M. Shahedi Asl, M. Mohammadi, J. Alloys Compd. 857, 158281 (2021)

    Article  CAS  Google Scholar 

  48. J. Ding, S. Lu, L. Shen, R. Yan, Y. Zhang, H. Zhang, J. Hazard. Mater. 384, 121255 (2020)

    Article  CAS  Google Scholar 

  49. M.Y. ur Rehman, S. Manzoor, N. Nazar, A.G. Abid, A.M. Qureshi, A.H. Chughtai, K.S. Joya, A. Shah, M.N. Ashiq, J. Alloys Compd. 856, 158038 (2021)

    Article  Google Scholar 

  50. X. Xiao, B. Han, G. Chen, L. Wang, Y. Wang, Sci. Rep. 7, 1 (2017)

    Article  Google Scholar 

  51. C. Eames, J.M. Frost, P.R.F. Barnes, B.C. O’Regan, A. Walsh, M.S. Islam, Nat. Commun. 6, 2 (2015)

    Article  Google Scholar 

  52. P. Srivastava, R. Kumar, M. Bag, Phys. Chem. Chem. Phys. 23, 10936 (2021)

    Article  CAS  Google Scholar 

  53. M.B. Poudel, H.J. Kim, J. Energy Chem. 64, 475 (2021)

    Article  Google Scholar 

  54. L.E. Oloore, M.A. Gondal, A.J. Popoola, I.K. Popoola, Carbon N. Y. 173, 1048 (2021)

    Article  CAS  Google Scholar 

  55. R. Kumar, M. Bag, J. Phys. Chem. C 125, 16946 (2021)

    Article  CAS  Google Scholar 

  56. L.E. Oloore, M.A. Gondal, A.J. Popoola, I.K. Popoola, Electrochim. Acta 361, 137082 (2020)

    Article  CAS  Google Scholar 

  57. A. Slonopas, H. Ryan, P. Norris, Electrochim. Acta 307, 334 (2019)

    Article  CAS  Google Scholar 

  58. C.H. Ng, H.N. Lim, S. Hayase, Z. Zainal, S. Shafie, H.W. Lee, N.M. Huang, A.C.S. Appl, Energy Mater. 1, 692 (2018)

    CAS  Google Scholar 

  59. T. Li, J. Mallows, K. Adams, G.S. Nichol, J.H.J. Thijssen, N. Robertson, Batter. Supercaps 2, 568 (2019)

    Article  CAS  Google Scholar 

  60. J.T. Mefford, W.G. Hardin, S. Dai, K.P. Johnston, K.J. Stevenson, Nat. Mater. 13, 726 (2014)

    Article  CAS  Google Scholar 

  61. H.M. Kolkovska, I.P. Yaremiy, P.I. Kolkovskyi, S.-V.S. Sklepova, B.I. Rachiy, A.G. Belous, M.O. Halushchak, J. Nano- Electron. Phys. 14, 01020 (2022)

    Article  CAS  Google Scholar 

  62. N. Arjun, G.T. Pan, T.C.K. Yang, Results Phys. 7, 920 (2017)

    Article  Google Scholar 

  63. A. Rezanezhad, E. Rezaie, L.S. Ghadimi, A. Hajalilou, E. Abouzari-Lotf, N. Arsalani, Outstanding Supercapacitor Performance of Nd–Mn Co-Doped Perovskite LaFeO3@nitrogen-Doped Graphene Oxide Nanocomposites (Elsevier, 2020)

    Book  Google Scholar 

  64. P.M. Shafi, V. Ganesh, A.C. Bose, A.C.S. Appl, Energy Mater. 1, 2802 (2018)

    CAS  Google Scholar 

  65. T. Shao, H. You, Z. Zhai, T. Liu, M. Li, L. Zhang, Mater. Lett. 201, 122 (2017)

    Article  CAS  Google Scholar 

  66. J. Singh, U.K. Goutam, A. Kumar, Sol. State Sci. 95, 1 (2019)

    Article  Google Scholar 

  67. C. Dong, G. Wu, Z. Wang, W. Ren, Y. Zhang, Z. Shen, T. Li, A. Wu, Dalt. Trans. 46, 13720 (2017)

    Article  Google Scholar 

Download references

Funding

The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Contributions

FI: contributed in writing-reviewing, conceptualization, methodology,  and editing of this manuscript. MNA:worked as project administration. FM, MSN and SM: contributed in data curation, and formal analysis. MR: writing- original draft of this manuscript. TM: involved in initial and final manuscript writing. All writers read and approved the final manuscript.

Corresponding author

Correspondence to Faisal Iqbal.

Ethics declarations

Conflict of interest

This manuscript has not been published and is not under consideration for publication elsewhere. We have no conflicts of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riaz, M., Munawar, T., Mukhtar, F. et al. Facile synthesis of polyaniline-supported halide perovskite nanocomposite (KCuCl3/PANI) as potential electrode material for supercapacitor. J Mater Sci: Mater Electron 33, 24462–24476 (2022). https://doi.org/10.1007/s10854-022-09159-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09159-9

Navigation