Skip to main content
Log in

TiO2/rGO aerogels toward ultra-wide electromagnetic wave absorption properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The development of new composite absorbing materials with lightweight, broadband, and high absorption is an important research direction of functional materials. Aimed at improving the electromagnetic (EM) matching characteristics of graphene and improving its EM wave absorption performance, we successfully prepared titanium dioxide/reduced graphene oxide (TiO2/rGO) aerogels via one-step hydrothermal method and annealing treatment. The amount of TiO2 in the aerogel was controlled by adjusting the addition amount of tetrabutyl orthotitanate (TBOT), and the influence of TiO2 content on the EM parameters and absorption performance was explored. The minimum reflection loss (RLmin) value of − 52.1 dB at 13.24 GHz can be obtained when the volume ratio of GO solution to TBOT solution (VGO:VTBOT) is 10:1, with a wide effective absorption bandwidth (EAB) of 8.57 GHz and the matching thickness (dm) of 3.5 mm. As VGO:VTBOT is 10:2, the EAB in the range of dm of 2.9–3.6 mm is greater than 10 GHz (RL < − 10 dB), and the widest can reach 14.58 GHz (3.42–18 GHz). The introduction of TiO2 nanoparticles can effectively improve the impedance matching characteristics of graphene, and the contact between TiO2 nanoparticles and rGO sheets can also increase the interface polarization ability of the system, resulting in the acquisition of high-performance EM wave-absorbing materials. The preparation method is simple in operation, low in cost, and has a good application prospect, providing us an insight into designing and fabricating other graphene-based EM wave-absorbing materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author.

References

  1. R.M. Wang, P.W. Bai, B. Zhao, Z.Y. Bai, X.Q. Guo, R. Zhang, Investigation of the pore-size dependent microwave absorption properties of honeycomb SnO2. J. Mater. Sci. 32, 25725–25734 (2021)

    CAS  Google Scholar 

  2. Y.J. Zhang, Y.L. Zhang, Y.P. Li, M.H. Yao, C.Y. Liu, X.F. Miao, H.K. Zhao, Y.Y. Shao, F. Xu, Facile design and permittivity control of reduced graphene oxide foam/TiO2 3D composite towards lightweight and high-efficient microwave absorption. J. Alloys Compd. 889, 161695 (2021)

    Article  Google Scholar 

  3. H. Jian, Q.R. Du, Q.Q. Men, L. Guan, R.S. Li, B.B. Fan, X. Zhang, X.Q. Guo, B. Zhao, R. Zhang, Structure-dependent electromagnetic wave absorbing properties of bowl-like and honeycomb TiO2/CNT composites. J. Mater. Sci. Technol. 109, 105–113 (2021)

    Article  Google Scholar 

  4. Y. Fang, W.J. Wang, S. Wang, X.W. Hou, W.D. Xue, R. Zhao, A quantitative permittivity model for designing electromagnetic wave absorption materials with conduction loss: a case study with microwave-reduced graphene oxide. Chem. Eng. J. 439, 135672 (2022)

    Article  CAS  Google Scholar 

  5. A.A. El-Shahat, M. Ashraf, M. Waleed, K. Sayed, Simulation: early detection of brain vessels stroke by applying electromagnetic waves non-invasively. Int. J. Recent Innov. Trends Comput. Commun. 9, 1–10 (2021)

    Article  Google Scholar 

  6. B. Zhao, Y. Li, H.Y. Ji, P.W. Bai, S. Wang, B.B. Fan, X.Q. Guo, R. Zhang, Lightweight graphene aerogels by decoration of 1D CoNi chains and CNTs to achieve ultra-wide microwave absorption. Carbon 167, 411–420 (2021)

    Article  Google Scholar 

  7. D. Jin, X.L. Yang, Y. Wei, Preparation and enhancement microwave absorption properties of carbon fibers coated with CoNi alloy by solvothermal. J. Mater. Sci. 33, 4510–4522 (2022)

    CAS  Google Scholar 

  8. G.R. Gordani, M.R.L. Estarki, E. Kiani, S. Torkian, The effects of strontium ferrite micro-and nanoparticles on the microstructure, phase, magnetic properties, and electromagnetic waves absorption of graphene oxide-SrFe12O19-SiC aerogel nanocomposite. J. Magn. Magn. Mater. 545, 168667 (2021)

    Article  Google Scholar 

  9. G.R. Gordani, M.R.L. Estarki, M. Danesh, E. Kiani, M. Tavoosi, Microstructure, phase, magnetic properties, and electromagnetic wave absorption of graphene oxide-Ni0.7Zn0.3Fe2O4-Al2O3 aerogel. Ceram. Int. 48, 3059–3069 (2021)

    Article  Google Scholar 

  10. S.K. Abdel-Aal, A.I. Beskrovnyi, A.M. Ionov, R.N. Mozhchil, A.S. Abdel-Rahman, Structure investigation by neutron diffraction and X-ray diffraction of graphene nanocomposite CuO-rGO prepared by low-cost method. Phys. Status Solidi A 218, 2100138 (2021)

    Article  CAS  Google Scholar 

  11. M. Motahharinia, H.A. Zamani, H. Karimi-Maleh, Electrochemical determination of doxorubicin in injection samples using paste electrode amplified with reduced graphene oxide/Fe3O4 nanocomposite and 1-Hexyl-3-methylimidazolium hexafluorophosphate. Chem. Methodol. 5, 107–113 (2021)

    CAS  Google Scholar 

  12. A. Moghaddam, H.A. Zamani, H. Karimi-Maleh, A new sensing strategy for determination of tamoxifen using Fe3O4/graphene-ionic liquid nanocomposite amplified paste electrode. Chem. Methodol. 5, 373–380 (2021)

    CAS  Google Scholar 

  13. I. Bychko, A. Abakumov, O. Didenko, M.Y. Chen, J.G.O. Tang, P. Strizhak, Differences in the structure and functionalities of graphene oxide and reduced graphene oxide obtained from graphite with various degrees of graphitization. J. Phys. Chem. Solids 164, 110614 (2022)

    Article  CAS  Google Scholar 

  14. R. Yang, Y.Y. Zhou, Y.M. Ren, D.W. Xu, L. Guan, X.Q. Guo, R. Zhang, B. Zhao, Promising PVDF-CNT-graphene-NiCo chains composite films with excellent electromagnetic interference shielding performance. J. Alloys Compd. 90, 164538 (2022)

    Article  Google Scholar 

  15. W.L. Song, C.C. Gong, H.M. Li, X.D. Cheng, M.J. Chen, X.J. Yuan, H.S. Chen, Y.Z. Yang, D.N. Fang, Graphene-based sandwich structures for frequency selectable electromagnetic shielding. ACS Appl. Mater. Interfaces 9, 36119–36129 (2017)

    Article  CAS  Google Scholar 

  16. J. Tang, N. Liang, L. Wang, J. Li, G. Tian, D. Zhang, S.H. Feng, H.J. Yue, Three-dimensional nitrogen-doped reduced graphene oxide aerogel decorated with Ni nanoparticles with tunable and unique microwave absorption. Carbon 152, 575–586 (2019)

    Article  CAS  Google Scholar 

  17. Z.Z. Yu, T. Dai, S. Yuan, H.W. Zou, P.B. Liu, Electromagnetic interference shielding performance of anisotropic polyimide/graphene composite aerogels. ACS Appl. Mater. Interfaces 12, 30990–31001 (2020)

    Article  CAS  Google Scholar 

  18. T. Xia, C. Zhang, N.A. Oyler, X.B. Chen, Hydrogenated TiO2 nanocrystals: a novel microwave absorbing material. Adv. Mater. 25, 6905–6910 (2013)

    Article  CAS  Google Scholar 

  19. J.W. Liu, J.J. Xu, R.C. Che, H.J. Chen, M.M. Liu, Z.W. Liu, Hierarchical Fe3O4@TiO2 yolk-shell microspheres with enhanced microwave-absorption properties. Chem. Eur. J. 19, 6746–6752 (2013)

    Article  CAS  Google Scholar 

  20. Z.C. Mo, R.L. Yang, D.W. Lu, L.L. Yang, Q.M. Hu, H.B. Li, H. Zhu, Z.K. Tang, X.C. Gui, Lightweight, three-dimensional carbon nanotube@TiO2 sponge with enhanced microwave absorption performance. Carbon 144, 433–439 (2019)

    Article  CAS  Google Scholar 

  21. M. Green, A.T.V. Tran, R. Smedley, A. Roach, J. Murowchick, X.B. Chen, Microwave absorption of magnesium/hydrogen-treated titanium dioxide nanoparticles. Nano Mater. Sci. 1, 48–59 (2019)

    Article  Google Scholar 

  22. Q. Liao, M. He, Y.M. Zhou, S.X. Nie, Y.J. Wang, B.B. Wang, X.M. Yang, X.H. Bu, R.L. Wang, Rational construction of Ti3C2Tx/Co-MOF-derived laminated Co/TiO2-C hybrids for enhanced electromagnetic wave absorption. Langmuir 34, 15854–15863 (2018)

    Article  CAS  Google Scholar 

  23. X.S. Rong, H.F. Chen, J. Rong, X.Y. Zhang, J. Wei, S. Liu, X.T. Zhou, J.C. Xu, F.X. Qiu, Z.R. Wu, An all-solid-state Z-scheme TiO2/ZnFe2O4 photocatalytic system for the N2 photofixation enhancement. Chem. Eng. J. 371, 286–293 (2019)

    Article  CAS  Google Scholar 

  24. P. Shadi, A.A. Parviz, S.T. Mohammad, Optimization of solar-photocatalytic degradation of polychlorinated biphenyls using photocatalyst (Nd/Pd/TiO2) by taguchi technique and detection by solid phase nano extraction. Iran. J. Chem. Chem. Eng. 40, 1541–1553 (2021)

    Google Scholar 

  25. Y.Y. Gui, P. Chen, D.Y. Liu, Y. Fan, J. Zhou, J.X. Zhao, H. Liu, X. Guo, W.Q. Liu, Y. Cheng, TiO2 nanotube/RGO modified separator as an effective polysulfide-barrier for high electrochemical performance Li-S batteries. J. Alloys Compd. 895, 162495 (2022)

    Article  CAS  Google Scholar 

  26. N. Kumar, S.K. Dwivedi, D.C. Tiwari, R. Tomar, Study of rGO-CNF/Ce-TiO2 based heterojunction for optoelectronic devices. Mater. Lett. 315, 131945 (2022)

    Article  CAS  Google Scholar 

  27. S.K. Abdel-Aal, M.F. Kandeel, A.F. El-Sherif, A.S. Abdel-Rahman, Synthesis, characterization, and optical properties of new organic-inorganic hybrid perovskites [(NH3)2(CH2)3]CuCl4 and [(NH3)2(CH2)4]CuCl2Br2. Phys. Status Solidi A 218, 2100036 (2021)

    Article  CAS  Google Scholar 

  28. S.K. Abdel-Aal, A.S. Abdel-Rahman, Graphene influence on the structure, magnetic, and optical properties of rare-earth perovskite. J Nanopart. Res. 22, 267 (2020)

    Article  CAS  Google Scholar 

  29. J.N. Ma, W. Liu, B. Quan, X.H. Liang, G.B. Ji, Incorporation of the polarization point on the graphene aerogel to achieve strong dielectric loss behavior. J. Colloid Interface Sci. 504, 479–484 (2017)

    Article  CAS  Google Scholar 

  30. S.K. Abdel-Aal, A.S. Abdel-Rahman, W.M. Gamal, M. Abdel-Kader, H.S. Ayoub, A.F. El-Sherif, M.F. Kandeel, S. Bozhko, E.E. Yakimov, E.B. Yakimov, Crystal structure, vibrational spectroscopy and optical properties of a one-dimensional organic-inorganic hybrid perovskite of [NH3CH2CH(NH3)-CH2]BiCl5. Acta Cryst. 75, 880 (2019)

    CAS  Google Scholar 

  31. M.F. Kandeel, S.K. Abdel-Aal, A.F. El-Sherif, H.S. Ayoub, A.S. Abdel-Rahman, Crystal structure and optical properties of 1D-bi based organic-inorganic hybrid perovskite. IOP Conf. Ser. Mater. Sci. Eng. 610, 012063 (2019)

    Article  CAS  Google Scholar 

  32. M.A.A. Abadi, M. Masrournia, M. Abedi, Simultaneous extraction and preconcentration of benzene, toluene, ethylbenzene and xylenes from aqueous solutions using magnetite-graphene oxide composites. Chem. Methodol. 5, 11–20 (2021)

    CAS  Google Scholar 

  33. S.F. Pei, H.M. Cheng, The reduction of graphene oxide. Carbon 50, 3210–3228 (2012)

    Article  CAS  Google Scholar 

  34. S. Eigler, C.H. Dotzer, A. Hirsch, Visualization of defect densities in reduced graphene oxide. Carbon 50, 3666–3673 (2012)

    Article  CAS  Google Scholar 

  35. Z. Hoseini, A. Davoodnia, A. Khojastehnezhad, M. Pordel, Phosphotungstic acid supported on functionalized graphene oxide nanosheets (GO-SiC3-NH3-H2PW): preparation, characterization, and first catalytic application in the synthesis of amidoalkyl naphthols. Eurasian Chem. Commun 2, 398–409 (2020)

    Article  CAS  Google Scholar 

  36. B.Y. Kuang, W.L. Song, M.Q. Ning, J.B. Li, Z.J. Zhao, D.Y. Guo, M.S. Cao, H.B. Jin, Chemical reduction dependent dielectric properties and dielectric loss mechanism of reduced graphene oxide. Carbon 127, 209–217 (2018)

    Article  CAS  Google Scholar 

  37. C.H. Wang, Y.J. Ding, Y. Yuan, X.D. He, S.T. Wu, S. Hu, M.C. Zou, W.Q. Zhao, L.S. Yang, A.Y. Cao, Y.B. Li, Graphene aerogel composites derived from recycled cigarette filters for electromagnetic wave absorption. J. Mater. Chem. C 3, 11893–11901 (2015)

    Article  CAS  Google Scholar 

  38. C. Zhou, S. Geng, X.W. Xu, T.H. Wang, L.Q. Zhang, X.J. Tian, F. Yang, H.T. Yang, Y.F. Li, Lightweight hollow carbon nanospheres with tunable sizes towards enhancement in microwave absorption. Carbon 108, 234–241 (2016)

    Article  CAS  Google Scholar 

  39. U. Ritter, P. Scharff, C. Siegmund, O.P. Dmytrenko, N.P. Kulish, Y.L. Prylutskyy, N.M. Belyi, V.A. Gubanov, L.I. Komarova, S.V. Lizunova, V.G. Poroshin, V.V. Shlapatskaya, H. Bernas, Radiation damage to multi-walled carbon nanotubes and their Raman vibrational modes. Carbon 44, 2694–2700 (2006)

    Article  CAS  Google Scholar 

  40. Y. Zhang, Y. Huang, H.H. Chen, Z.Y. Huang, Y. Yang, P.S. Xiao, Y. Zhou, Y.S. Chen, Composition and structure control of ultralight graphene foam for high-performance microwave absorption. Carbon 105, 438–447 (2016)

    Article  CAS  Google Scholar 

  41. X.Q. Ji, Y.S. Niu, Y.H. Xu, Rational design of H ierarchical SiO2@TiO2 composite with large internal void space for high performance microwave absorption. Russ. J. Phys. Chem. A 93, 1128–1132 (2019)

    Article  Google Scholar 

  42. J. Molina, F. Cases, L.M. Moretto, Graphene-based materials for the electrochemical determination of hazardousions. Anal. Chim. Acta 946, 9–39 (2016)

    Article  CAS  Google Scholar 

  43. Y. Huang, H.F. Li, Z.F. Wang, M.S. Zhu, Z.X. Pei, Q. Xue, Y. Huang, C.Y. Zhi, Nanostructured polypyrrole as a flexible electrode material of super capacitor. Nano Energy 22, 422–438 (2016)

    Article  CAS  Google Scholar 

  44. C.Q. Song, X.W. Yin, M.K. Han, X.L. Li, Z.X. Hou, L.T. Zhang, L.F. Cheng, Three-dimensional reduced graphene oxide foam modified with ZnO nanowires for enhanced microwave absorption properties. Carbon 116, 50–58 (2017)

    Article  CAS  Google Scholar 

  45. Y.J. Zhang, Y.L. Zhang, Y.P. Li, M.H. Yao, C.Y. Liu, X.F. Miao, H.K. Zhao, Y.Y. Shao, F. Xu, Facile design and permittivity control of reduced graphene oxide foam/TiO2 3D composite towards lightweight and high-efficient microwave absorption. J. Alloys Compd. 889, 161695–161707 (2021)

    Article  Google Scholar 

  46. S. Qiu, H.L. Lyu, J.R. Liu, Y.Z. Liu, N.N. Wu, W. Liu, Facile synthesis of porous nickel/carbon composite microspheres with enhanced electromagnetic wave absorption by magnetic and dielectric losses. ACS Appl. Mater. Interfaces 8, 20258–20266 (2016)

    Article  CAS  Google Scholar 

  47. J. Xiang, J.L. Li, X.H. Zhang, Q. Ye, J.H. Xu, X.Q. Shen, Magnetic carbon nanofibers containing uniformly dispersed Fe/Co/Ni nanoparticles as stable and high-performance electromagnetic wave absorbers. J. Mater. Chem. A 2, 16905–16914 (2014)

    Article  CAS  Google Scholar 

  48. Y.H. Yin, X.F. Liu, X.J. Wei, R.H. Yu, J.L. Shui, Porous CNTs/Co composite derived from zeolitic imidazolate framework: a lightweight, ultrathin, and highly efficient eectromagnetic wave absorber. ACS Appl. Mater. Interfaces 8, 34686–34698 (2016)

    Article  CAS  Google Scholar 

  49. B. Quan, X.H. Liang, G.B. Ji, Y. Cheng, W. Liu, J.N. Ma, Y.N. Zhang, D.R. Li, G.Y. Xu, Dielectric polarization in electromagnetic wave absorption: review and perspective. J. Alloys Compd. 728, 1065–1075 (2017)

    Article  CAS  Google Scholar 

  50. X. Qiu, L.X. Wang, H.L. Zhu, Y.K. Guan, Q.T. Zhang, Lightweight and efficient microwave absorbing materials based on walnut shell-derived nano-porous carbon. Nanoscale 9, 7408–7418 (2017)

    Article  CAS  Google Scholar 

  51. H.L. Xu, X.W. Yin, M. Zhu, M.K. Han, Z.X. Hou, X.L. Li, L.T. Zhang, L.F. Cheng, Carbon hollow microspheres with a designable mesoporous shell for high performance electromagnetic wave absorption. ACS Appl. Mater. Interfaces 9, 6332–6341 (2017)

    Article  CAS  Google Scholar 

  52. D.D. Yao, T. Li, Y.P. Zheng, Z.L. Zhang, Fabrication of a functional microgel-based hybrid nanofluid and its application in CO2 gas adsorption. React. Funct. Polym. 136, 131–137 (2019)

    Article  CAS  Google Scholar 

  53. Q. Song, F. Ye, X.W. Yin, W. Li, H.J. Li, Y.S. Liu, K.Z. Li, K.Y. Xie, X.H. Li, Q.G. Fu, L.F. Cheng, L.T. Zhang, B.Q. Wei, Carbon nanotube-multilayered graphene edge plane core-shell hybrid foams for ultrahigh-performance electromagnetic-interference shielding. Adv. Mater. 29, 1701583 (2017)

    Article  Google Scholar 

  54. X.X. Wang, T. Ma, J.C. Shu, M.S. Cao, Confinedly tailoring Fe3O4 clusters-NG to tune electromagnetic parameters and microwave absorption with broadened bandwidth. Chem. Eng. J. 332, 321–330 (2018)

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the Excellent Youth Scholars of Henan Province (212300410089), the Foundation for University Youth Key Teachers of Henan Province (2020GGJS170), the Support Program for Scientific and Technological Innovation Talents of Higher Education in Henan Province (21HASTIT004), the Natural Science Foundation of Henan Province (202300410488, 202300410491, and 222300420578), and the Key Scientific Research Project of Colleges and Universities in Henan Province (21A150056, 21A430045, 22A430039, and 22A430040).

Author information

Authors and Affiliations

Authors

Contributions

HJ and YR contributed to conceptualization, methodology, and writing of the original draft. DF contributed to investigation and data curation. ZZ and ZY contributed to formal analysis and resources collection. DX and RY contributed to conceptualization and investigation. XG and BZ contributed to conceptualization and reviewing & editing of the manuscript.

Corresponding authors

Correspondence to Yumei Ren, Xiaoqin Guo or Biao Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 529 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, H., Ren, Y., Feng, D. et al. TiO2/rGO aerogels toward ultra-wide electromagnetic wave absorption properties. J Mater Sci: Mater Electron 33, 24381–24395 (2022). https://doi.org/10.1007/s10854-022-09156-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09156-y

Navigation