Skip to main content
Log in

Effect of indium substitution on antiperovskite superconductor ZnNNi3

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, a series of Zn1−xInxNNi3 samples were synthesized by a solid–gas reaction route under NH3 atmosphere and the same was crystallized in Pm3m space group. The magnetic properties was investigated by means of zero-field-cooling and field-cooling magnetization and studied the Zn-site doping effect, only when 0.3 ≤ x, the superconductivity rapidly disappears. In element doping affects the electron pairing and strongly suppresses the superconductivity. No uniform solid solution can be obtained at low In content (x ≤ 0.2), instead micrometer-scaled ferromagnetic Zn0.7In0.3NNi3 domains formed embedded within a superconductive ZnNNi3 bulk, showing chemical phase separation of superconductive ZnNNi3 and ferromagnetic Zn0.7In0.3NNi3. Only at a high In content (0.3 ≤ x), the uniform ferromagnetic solid solution Zn1-xInxNNi3 is formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Sakthipandi, N. Lenin, R.R. Kanna, A.S. Afroze, M. Sivabharathy, PVA-doped NiNdxFe2-xO4 nanoferrites: tuning of dielectric and magnetic properties. J. Magn. Magn Mater. 485, 105–111 (2019)

    Article  CAS  Google Scholar 

  2. R. Von Helmolt, J. Wecker, B. Holzapfel, L. Schultz, K. Samwer, Phys. Rev. Lett. 71, 2331 (1993)

    Article  Google Scholar 

  3. C. Zener, Phys. Rev. 82, 403–405 (1951)

    Article  CAS  Google Scholar 

  4. P. Kulandaivelu, K. Sakthipandi, P. Senthilkumar, V. Rajendran, Mechanical properties of bulk and nano structured La0.61Sr039MnO3 perovskite manganite materials. J. Phys. Chem. Solids. 74, 205–214 (2013)

    Article  CAS  Google Scholar 

  5. A. Hossain, P. Bandyopadhyay, A.K.M. Abhijit Karmakar, A. Ullah, R.K. Manavalan, K. Sakthipandi, N. Alhokbany, S.M. Alshehri, J. Ahmed, The hybrid halide perovskite: synthesis strategies, fabrications, and modern applications. Ceram. Int. (2021). https://doi.org/10.1016/j.ceramint.2021.11.313

    Article  Google Scholar 

  6. X.L. Zhang, L.F. Liu, W.M. Liu, Quantum anomalous hall effect and tunable topological states in 3d transition metals doped silicene. Sci. Rep. 3, 2908 (2013)

    Article  Google Scholar 

  7. A.C. Ji, X.C. Xie, W.M. Liu, Quantum magnetic dynamics of polarized light in arrays of microcavities. Phys. Rev. Lett. 99, 183602 (2007)

    Article  Google Scholar 

  8. Z.F. Jiang, R.D. Li, S.C. Zhang, W.M. Liu, Semiclassical time evolution of the holes from Luttinger Hamiltonian. Phys. Rev. B 72(4), 045201 (2005)

    Article  Google Scholar 

  9. T. He, Q. Huang, A.P. Ramirez, Y. Wang, K.A. Regan, N. Rogado, M.A. Hayward, M.K. Haas, J.S. Slusky, K. Inumara, H.W. Zandbergen, N.P. Ong, R.J. Cava, Nature 411, 54 (2001)

    Article  CAS  Google Scholar 

  10. P.M. Singer, T. Imai, T. He, M.A. Hayward, R.J. Cava, Phys. Rev. Lett. 87, 2576011 (2001)

    Article  Google Scholar 

  11. R. Prozorov, A. Snezhko, T. He, R.J. Cava, Phys. Rev. B 68, 1805021 (2003)

    Article  Google Scholar 

  12. Z.Q. Mao, M.M. Rosario, K.D. Nelson, K. Wu, I.G. Deac, P. Schiffffer, Y. Liu, T. He, K.A. Regan, R.J. Cava, Phys. Rev. B 67, 0945021 (2003)

    Article  Google Scholar 

  13. J.-Y. Lin, P.L. Ho, H.L. Huang, P.H. Lin, Y.-L. Zhang, R.-C. Yu, C.-Q. Jin, H.D. Yang, Phys. Rev. B 67, 0525011 (2003)

    Article  Google Scholar 

  14. M. Uehara, T. Yamazaki, T. Kroi, T. Kashida, Y. Kimishima, K. Ohishi, J. Phys. Chem. Solids 68, 2178 (2007)

    Article  CAS  Google Scholar 

  15. M. Uehara, T. Amano, S. Takano, T. Kori, T. Yamazaki, Y. Kimishima, Physica. C 440, 6 (2006)

    Article  CAS  Google Scholar 

  16. A.F. Dong, G.C. Che, W.W. Huang, S.L. Jia, H. Chen, Z.X. Zhao, Physica. C 422, 65 (2005)

    Article  CAS  Google Scholar 

  17. P. Tong, Y.P. Sun, X.B. Zhu, W.H. Song, Solid State Commun. 141, 336 (2007)

    Article  CAS  Google Scholar 

  18. P. Tong, Y.P. Sun, X.B. Zhu, W.H. Song, Phys. Rev. B 73, 245106 (2006)

    Article  Google Scholar 

  19. M. Uehara, A. Uehara, K. Kozawa, Y. Kimishima, J. Phys. Soc. Jpn. 76, 0337021 (2009)

    Google Scholar 

  20. R. Juza, W. Sachze, Z. Anorg, Alleg. Chem. 251, 201 (1943)

    CAS  Google Scholar 

  21. N. Saegusa, T. Tsukagoshi, E. Kita, A. Tasaki, IEEE Trans. Magn. 19, 1629 (1983)

    Article  Google Scholar 

  22. H. Jacobs, D. Rechenbach, U. Zachwieja, J. Alloy Compds. 227, 10 (1995)

    Article  CAS  Google Scholar 

  23. J.-Y. Chen, X. Wang, First-principles verification of CuNNi3 and ZnNNi3 as phonon mediated superconductors. Chin. Phys. B 24, 086301 (2015)

    Article  Google Scholar 

  24. Q.H. Lu, M.L. Xie, G.L. Han, B. Zheng, Y.Z. Song, J. Qiang, X.Q. Wang, Z.G. Wu, P.X. Yan, W.M. Liu, J. Magn. Magn. Mater. 474, 76–82 (2019)

    Article  CAS  Google Scholar 

  25. J.A. Mydosh, Spin glasses: an experimental introduction (Taylor and Francis, London, 1993)

    Google Scholar 

  26. S. Chikuzami, Physics of ferromagnetism (Clarendon, Oxford, 1997)

    Google Scholar 

  27. G. Williams, R.A. Hein, T.L. Franca villa, D.H. Liebenberg, Magnetic Susceptibility and Other Spin Systems (Plenum, New York, 1991), p.475

    Book  Google Scholar 

  28. J.L. Tholance, R.A. Hein, T.L. Franca villa, D.H. Liebenberg, Magnetic Susceptibility and Other Spin Systems (Plenum, New York, 1991), p.503

    Book  Google Scholar 

  29. J.L. Dormann, R. Charkaoui, L. Spinu, M. Nogues, F. Lucari, F. Dorazio, D. Fiorani, A. Garcia, E. Tronc, J.P. Jolivet, J. Magn. Magn. Mater. 187, L139 (1985)

    Article  Google Scholar 

  30. H. Maniya, I. Nakatani, T. Furubayashi, Phys. Rev. Lett. 80, 177 (1998)

    Article  Google Scholar 

  31. J.A. Detoro, M.A. Lopez de la Torre, J.M. Riveiro, R. Saez Puche, A. Gomez-Herrero, L.C. Otero-Diaz, Phys. Rev. B 60, 12918 (1999)

    Article  CAS  Google Scholar 

  32. T. Yamazaki, A. Uehara, K. Kozawa, Y. Kimisima, M. Uehara, Adv. Condens. Matter. Phys. 2012, 9028123 (2012)

    Article  Google Scholar 

  33. M. Uehara, K. Kozawa, M. Ohashi, Y. Suganuma, S. Tadera, T. Yamazaki, Y. Kimishima, J. Phys: Conf. Ser. 400, 022127 (2012)

    Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 51872004), the National Key R&D Program of China (Grant No.2021YFB3502400), the Education Department of Anhui Province (No. KJ2018A0039), and the Key Research and Development Plan of Anhui Province (Nos. 201904a05020038, 202003a05020051).

Author information

Authors and Affiliations

Authors

Contributions

LS prepared the sample and wrote the manuscript. SF helped to discuss the article framework. XK developed the experimental formula and XL provided the measurements. All authors contributed to the discussions and preparation of the manuscript.

Corresponding author

Correspondence to Xucai Kan.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Data availability

All data, models, and code generated or used during the study appear in the submitted article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shan, L., Feng, S., Liu, X. et al. Effect of indium substitution on antiperovskite superconductor ZnNNi3. J Mater Sci: Mater Electron 33, 24220–24227 (2022). https://doi.org/10.1007/s10854-022-09138-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09138-0

Navigation