Skip to main content
Log in

Effect of multiphase Nb2O5 on morphology and luminescence outcomes of Er3+-doped SiO2 nanopowder

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The present work embodies the effect of Nb2O5 on morphology and luminescence outcomes of Er3+-doped SiO2. Various modified structural parameters were evaluated for prepared samples due to gradual changes in the annealing temperature 300–900 °C range. The crystalline Er3+: SiO2/Nb2O5 powder was synthesized by a reliable sol–gel process with a 20–23 nm nanoparticle range. Proper annealing allowed to avoid the existence of various defects, chemical reactions, and impurity phases; consequently, the structural and optical properties have improved significantly in all prepared samples. In absorption spectra, the excitonic edge has been shifted toward the lower wavelength owing to the quantum size effect. A significant luminescence in the visible region is reported for Er3+: SiO2/Nb2O5 nanopowder at 260 nm. The International de I’Eclairage chromaticity graphs were drawn nearly in the white region, and full width half maxima was estimated at ~ 134 nm for most prominent IR signals. The observed strong luminescence has been correlated to the lifetime decay constant also. These characteristics enforced the utilization of prepared nanopowder in white light-emitting diodes and in solid-state display devices. More energetic PL emission spectra were obtained in long infrared (IR) regions at 525 nm excitation. This drastic change in optical behavior is noticed in Er3+: SiO2/Nb2O5 sample owing to energy transfer between Nb2O5 nanocrystals and Er3+ doped in amorphous silica where Nb2O5 acts as an efficient sensitizer. The reported Er3+: SiO2/Nb2O5 nanopowder can be implanted not only in the -S, -L, but also in the -C band of optical communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

“The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request”.

References

  1. C.D.S. Brites, P.P. Lima, N.J.O. Silva, A. Millán, V.S. Amaral, F. Palacio, L.D. Carlos, Thermometry at the nanoscale using lanthanide-containing organic-inorganic hybrid materials. J. Lumin. 133, 230–232 (2013). https://doi.org/10.1016/j.jlumin.2011.12.050

    Article  CAS  Google Scholar 

  2. Q. Liu, W. Feng, F. Li, Water-soluble lanthanide upconversion nanophosphors: synthesis and bioimaging applications in vivo. Coord. Chem. Rev. 273, 100–110 (2014). https://doi.org/10.1016/j.ccr.2014.01.004

    Article  CAS  Google Scholar 

  3. P.P. Lima, F.A.A. Paz, C.D.S. Brites, W.G. Quirino, C. Legnani, M. Silva, R.A.S. Ferreira, S.A. Junior, O.L. Malta, M. Cremona, L.D. Carlos, White OLED based on a temperature sensitive Eu3+/Tb3+ β-diketonate complex. Org. Electron. 15, 798–808 (2014). https://doi.org/10.1016/j.orgel.2014.01.009

    Article  CAS  Google Scholar 

  4. S.F.H. Correi, V. Bermudez, S.J.L. Ribeiro, P.S. Andre, R.A.S. Ferreira, L.D. Carlos, Luminescent solar concentrators: challenges for lanthanide-based organic–inorganic hybrid materials. J. Mater. Chem. A 2, 5580–5596 (2014). https://doi.org/10.1039/C3TA14964A

    Article  Google Scholar 

  5. X. Zhao, S. He, M. Tan, Design of infrared-emitting rare-earth doped nanoparticles and nanostructured composites. J. Mater. Chem. C. 36, 8349–8372 (2016). https://doi.org/10.1039/C6TC02373H

    Article  CAS  Google Scholar 

  6. J. Yang, Y. Hu, C. Jin, L. Zhuge, X. Wu, Structural and optical properties of Er-doped TiO2 thin films prepared by dual-frequency magnetron co-sputtering. Thin Solid Films 637, 9–13 (2017). https://doi.org/10.1016/j.tsf.2017.03.012

    Article  CAS  Google Scholar 

  7. R. Ahlawat, Gd2O3:SiO2 Nanocomposite: study on structural and optical behavior. Int. J. Appl. Ceram. Technol. 12, E256–E260 (2015). https://doi.org/10.1111/ijac.12405

    Article  CAS  Google Scholar 

  8. R. Ahlawat, Influence of annealing temperature on structural and optical properties of SiO2: RE2O3 [RE = Y, Gd] powder. J. Alloys. Compd. 638, 356–363 (2015). https://doi.org/10.1016/j.jallcom.2015.03.077

    Article  CAS  Google Scholar 

  9. S.K. Gupta, K. Sudarshan, R. M., Kadam, “optical nanomaterials with focus on rare earth doped oxide: a review.” Mater. Today. Commun. 27, 102277 (2021). https://doi.org/10.1016/j.mtcomm.2021.102277

    Article  CAS  Google Scholar 

  10. N. Rani, B. Goswami, R. Ahlawat, Impact of annealing on structure, morphology, bandgap, optical and dielectric behavior of Er3+ doped SiO2 nanopowder useful for photonic devices. SILICON (2021). https://doi.org/10.1007/s12633-021-01540-3

    Article  Google Scholar 

  11. R.R. Pereira, F.T. Aquino, A. Ferrier, P. Goldner, R.R. Gonçalves, Nanostructured rare earth doped Nb2O5: structural, optical properties and their correlation with photonic applications. J. Lumin. 170, 707–717 (2016). https://doi.org/10.1016/j.jlumin.2015.08.068

    Article  CAS  Google Scholar 

  12. N. Rani, R. Ahlawat, B. Goswami, Annealing effect on bandgap energy and photocatalytic properties of CeO2–SiO2 nanocomposite prepared by sol-gel technique. Mater. Chem. Phys. 241, 122401 (2020). https://doi.org/10.1016/j.matchemphys.2019.122401

    Article  CAS  Google Scholar 

  13. B. Goswami, N. Rani, R. Ahlawat, Structural and optical investigations of Nd3+ doped Y2O3-SiO2 Nanopowder. J. Alloys. Compd. 730, 450–457 (2018). https://doi.org/10.1016/j.jallcom.2017.09.269

    Article  CAS  Google Scholar 

  14. B.Q. Thanh, N.N. Ha, T.N. Khiem, N.D. Chien, Correlation between SnO2 nanocrystals and optical properties of Eu3+ ions in SiO2 matrix: relation of crystallinity, composition, and photoluminescence. J. Lumin. 163, 28–31 (2015). https://doi.org/10.1016/j.jlumin.2015.03.002

    Article  CAS  Google Scholar 

  15. J.L. Ferrari, K.O. Lima, E.P. Rute, A.S. Ferreira, L.D. Carlos, R.R. Goncalves, Color tunability of intense upconversion emission from Er3+–Yb3+ co-doped SiO2–Ta2O5 glass ceramic planar waveguides. J. Mater. Chem. 22, 9901 (2012). https://doi.org/10.1039/C2JM30456B

    Article  CAS  Google Scholar 

  16. E.K. Barimah, S. Rahayu, M.W. Ziarko, N. Bamiedakis, I.H. White, R.V. Penty, G.M. Kale, G. Jose, Erbium-doped nanoparticle−polymer composite thin films for photonic applications: structural and optical properties. ACS Omega 5, 9224–9232 (2020). https://doi.org/10.1021/acsomega.0c00040

    Article  CAS  Google Scholar 

  17. L.A. Rocha, R.L. Siqueira, J. Esbenshade, M.A. Schiavon, J.L. Ferrari, Photoluminescence and thermal stability of Tb3+-doped Gd2O3 nanoparticles embedded in SiO2 host matrix. J. Alloys. Compd. 731, 889–897 (2018). https://doi.org/10.1016/j.jallcom.2017.10.084

    Article  CAS  Google Scholar 

  18. N. Rani, R. Ahlawat, Role of ceria nanocrystals on morphology and luminescence of Eu3+ doped SiO2 nanopowder. J. Lumin. 208, 135–144 (2019). https://doi.org/10.1016/j.jlumin.2018.12.029

    Article  CAS  Google Scholar 

  19. L.M. Marcondes, L.P. Ravaro, A.S.S. de Camargo, D. Manzani, G.Y. Poirier, CdTe QD/Er3+-doped SiO2–Nb2O5 nanocomposites: thermal, structural and photophysical properties. Opt. Mater. 113, 110883 (2021). https://doi.org/10.1016/j.optmat.2021.110883

    Article  CAS  Google Scholar 

  20. C.D. Gómez, J.E. Rodríguez-Páez, The effect of the synthesis conditions on structure and photocatalytic activity of Nb2O5 nanostructures. Process. Appl. Ceram. 12, 218–229 (2018). https://doi.org/10.2298/PAC1803218G

    Article  Google Scholar 

  21. F.J. Caixeta, F.T. Aquino, R.R. Pereira, R.R. Gonçalves, Broadened and intense NIR luminescence from rare earth doped SiO2-Nb2O5 glass and glass ceramic prepared by an alternative sol gel route. J. Lumin. 171, 63–71 (2016). https://doi.org/10.1016/j.jlumin.2015.08.054

    Article  CAS  Google Scholar 

  22. R.A. Rani, A.S. Zoolfakar, A.P. O’Mullane, M.W. Austin, K. Kalantar-Zadeh, Thin films and nanostructures of niobium pentoxide: fundamental properties, synthesis methods and applications. J. Mater. Chem. A 2, 15683 (2014). https://doi.org/10.1039/c4ta02561j

    Article  CAS  Google Scholar 

  23. V.K. Soni, T. Roy, S. Dhara, G. Choudhary, P.R. Sharma, R.K. Sharma, On the investigation of acid and surfactant modification of natural clay for photocatalytic water remediation. J. Mater. Sci. 53, 10095–10110 (2018). https://doi.org/10.1007/s10853-018-2308-2

    Article  CAS  Google Scholar 

  24. N. Rani, Rachna ahlawat, “structural and optical properties of Nb2O5/SiO2 powder prepared by Sol-gel method.” AIP. Conf. Proc. 2265, 030128 (2020). https://doi.org/10.1063/5.0017030

    Article  CAS  Google Scholar 

  25. B.N. Nunes, O.F. Lopes, A.O.T. Patrocinio, D.W. Bahnemann, Recent advances in niobium-based materials for photocatalytic solar fuel production. Catalysts 10, 126 (2020). https://doi.org/10.3390/catal10010126

    Article  CAS  Google Scholar 

  26. A.M. Raba, J. Bautista-Ruíza, M.R. Joyab, Synthesis and structural properties of niobium pentoxide powders: a comparative study of the growth process. Mater. Res. 9, 1381–1387 (2016). https://doi.org/10.1590/1980-5373-MR-2015-0733

    Article  Google Scholar 

  27. A.M. Raba, J. Barba-Ortega, M.R. Joya, The effect of the preparation method of Nb2O5 oxide influences the performance of the photocatalytic activity. Appl. Phys. A 119, 923–928 (2015). https://doi.org/10.1007/s00339-015-9041-3

    Article  CAS  Google Scholar 

  28. A. Mirzaei, J.K. Gun-Joo Sun, C.L. Lee, S. Choi, H.W. Kim, “Hydrogen sensing properties and mechanism of NiO-Nb2O5 composite nanoparticle-based electrical gas sensors.” Ceram. Int. 43, 5247–5254 (2017). https://doi.org/10.1016/j.ceramint.2017.01.050

    Article  CAS  Google Scholar 

  29. R. Ahlawat, Effect of concentration and temperature on the surface morphology of Gd2O3 Nanocrystallites in silica. Int. J. Appl. Ceram. 12, 1131–1139 (2015). https://doi.org/10.1111/ijac.12343

    Article  CAS  Google Scholar 

  30. C. Bhukkal, M. Chohan, R. Ahlawat, Synthesis, structural and enhanced optoelectronic properties of Cd(OH)2/CdO nanocomposite. Phys. B: Condens. Matter. 582, 411973 (2020). https://doi.org/10.1016/j.physb.2019.411973

    Article  CAS  Google Scholar 

  31. R. Ahlawat, Preparation and Effect of thermal treatment on Gd2O3:SiO2 nanocomposite. Mod. Phys. Lett. B 29, 1550046 (2015). https://doi.org/10.1142/S0217984915500463

    Article  CAS  Google Scholar 

  32. Q. Chen, Nb2O5 improved photoluminescence, magnetic and faraday rotation properties of magneto-optical glasses. J. Non-Cryst. Solids. 519, 119451 (2019). https://doi.org/10.1016/j.jnoncrysol.2019.05.027

    Article  CAS  Google Scholar 

  33. N. Rani, R. Ahlawat, Tailoring the structural and optical parameters of Eu3+: CeO2-SiO2 nanopowder via thermal treatment. SILICON 11, 2521–2529 (2019). https://doi.org/10.1007/s12633-018-0041-8

    Article  CAS  Google Scholar 

  34. X. Liu, R. Zheng, R. Yuan, L. Peng, Y. Liu, J. Lin, Released defective Nb2O5 with optimized solar photocatalytic activity. ECS. J. Solid. State. Sci. Technol. 6, 665–670 (2017). https://doi.org/10.1149/2.0361709jss

    Article  CAS  Google Scholar 

  35. S. Rada, P. Pascuta, L. Rus, M. Rada, E. Culea, Spectroscopic properties and ab initio calculations on the structure of erbium–zinc-borate glasses and glass ceramics. J. Non-Cryst. Solids. 358, 30–35 (2012). https://doi.org/10.1016/j.jnoncrysol.2011.08.017

    Article  CAS  Google Scholar 

  36. B.H. Babu, N. Ollier, M.L. Pichel, H.E. Hamzaoui, B. Poumellec, L. Bigot, I. Savelii, M. Bouazaoui, A. Ibarra, M. Lancry, Radiation hardening in sol-gel derived Er3+ doped silica glasses. J. Appl. Phys. 118, 123107 (2015). https://doi.org/10.1063/1.4932018

    Article  CAS  Google Scholar 

  37. X. Li, Y. Yu, P. Luo, W. Zhang, Z. Guo, X. Guan, Enhanced near-infrared emission from erbium and cerium oxide codoped silica nanocomposite. Opt. Express. 7, 1007–1013 (2017). https://doi.org/10.1364/OME.7.001007

    Article  CAS  Google Scholar 

  38. B. Boruah, R. Gupta, J.M. Modak, G. Madras, Nb2O5 via versatile doping with metals (Sr, Y, Zr, and Ag): a critical assessment. Nanoscale. Adv. 1, 2748 (2019). https://doi.org/10.1039/c9na00305c

    Article  CAS  Google Scholar 

  39. N.P. de Moraes, F.N. Silva, M.L.C.P. da Silva, T.M.B. Campos, G.P. Thim, L.A. Rodrigues, Methylene blue photodegradation employing hexagonal prism shaped niobium oxide as heterogeneous catalyst: effect of catalyst dosage, dye concentration, and radiation source. Mater. Chem. Phys. 214, 95–106 (2018). https://doi.org/10.1016/j.matchemphys.2018.04.063

    Article  CAS  Google Scholar 

  40. S. Kundu, R. Bhimireddi, K. Mishra, S.B. Rai, K.B.R. Varma, “Investigations into the structural and down-shifting and upconversion luminescence properties of Ba2Na1−3xErxNb5O15 (0 ≤ x ≤0.06) nanocrystalline phosphor synthesized via sol-gel route.” Mater. Res. Express 2, 105015 (2015). https://doi.org/10.1088/2053-1591/2/10/105015

    Article  CAS  Google Scholar 

  41. J.H. Faleiro, N.O. Dantas, A.C.A. Silva, H.P. Barbosa, B.H.S.T. da Silva, O. de Karmel, Lima, Rog´eria Rocha Gonçalves, Jefferson Luis Ferrari, Niobium oxide influence in the phosphate glasses triply doped with Er3+/ Yb3+/Eu3+ prepared by the melting process. J. Non-Cryst. Solids. 571, 121051 (2021). https://doi.org/10.1016/j.jnoncrysol.2021.121051

    Article  CAS  Google Scholar 

  42. M. Jamil, Z.S. Khan, A. Ali, N. Iqbal, Studies on solution processed Graphene- Nb2O5 nanocomposite based photoanode for dye-sensitized solar cells. J. Alloy. Comp. 694, 401–407 (2017). https://doi.org/10.1016/j.jallcom.2016.09.300

    Article  CAS  Google Scholar 

  43. Q. Wei, T. Zheng, J. Hana, C. Liu, J. Wang, X. Zhou, Precipitation of rare-earth ions doped pyrochlore nanocrystals in glasses. J. Non-Cryst. Solids 545, 120210 (2020). https://doi.org/10.1016/j.jnoncrysol.2020.120210

    Article  CAS  Google Scholar 

  44. F.J. Caixeta, F.T. Aquino, R.R. Gonçalves, The influence of Nb2O5 crystallization on the infrared-to-visible upconversion in Er3+/Yb3+ co-doped SiO2-Nb2O5 nanocomposites. J. Lumin. 188(295), 300 (2017). https://doi.org/10.1016/j.jlumin.2017.04.052

    Article  CAS  Google Scholar 

  45. V. Janicki, J. Sancho-Parramon, S. Yulin, M. Flemming, A. Chuvilin, Optical and structural properties of Nb2O5–SiO2 mixtures in thin films. Surf. Coat. Technol. 206, 3650–3657 (2012). https://doi.org/10.1016/j.surfcoat.2012.03.015

    Article  CAS  Google Scholar 

  46. F.T. Aquino, J.L. Ferrari, S.J.L. Ribeiro, A. Ferrier, P. Goldner, R.R. Gonçalves, Broadband NIR emission in novel sol–gel Er3+-doped SiO2–Nb2O5 glass ceramic planar waveguides for photonic applications. Opt. Mater. 35, 387–396 (2013). https://doi.org/10.1016/j.optmat.2012.09.029

    Article  CAS  Google Scholar 

  47. F.T. Aquino, R.R. Pereira, J.L. Ferrari, S.J.L. Ribeiro, A. Ferrier, P. Goldner, R.R. Gonçalves, Unusual broadening of the NIR luminescence of Er3+-doped Nb2O5 nano-crystals embedded in silica host: preparation and their structural and spectroscopic study for photonics applications. Mater. Chem. Phys. 147, 751–760 (2014). https://doi.org/10.1016/j.matchemphys.2014.06.016

    Article  CAS  Google Scholar 

  48. F.T. Aquino, J.L. Ferrari, L.J.Q. Maia, S.J.L. Ribeiro, A. Ferrier, P. Goldner, R.R. Gonçalves, Near infrared emission and multicolor tunability of enhanced upconversion emission from Er3+–Yb3+ co-doped Nb2O5 nanocrystals embedded in silica-based nano-composite and planar waveguides for photonics. J. Lumin. 170, 431–443 (2016). https://doi.org/10.1016/j.jlumin.2015.08.077

    Article  CAS  Google Scholar 

Download references

Funding

“The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.”

Author information

Authors and Affiliations

Authors

Contributions

“All authors contributed to the study conception and design. Material preparation and data collection and analysis were performed by NR, BG, and RA. The first draft of the manuscript was written by NR, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.”

Corresponding author

Correspondence to Rachna Ahlawat.

Ethics declarations

Competing interest

“The authors have no relevant financial or non-financial interests to disclose.”

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, N., Goswami, B. & Ahlawat, R. Effect of multiphase Nb2O5 on morphology and luminescence outcomes of Er3+-doped SiO2 nanopowder. J Mater Sci: Mater Electron 33, 23729–23748 (2022). https://doi.org/10.1007/s10854-022-09132-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09132-6

Navigation