Skip to main content
Log in

Dielectric behavior of EVA/EOC/xGnP ternary microcellular nanocomposites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The microcellular xGnP-loaded EVA/EOC ternary blend nanocomposites were fabricated via a melt blending process using a chemical blowing agent. The morphological and mechanical properties were investigated. The conductivity of the synthesized composites at room temperature was studied through a computer-controlled impedance analyzer at the frequency range of 100 Hz–5 MHz. The foam composites show high relative permittivity (εr) of 1080 and maximum tangent loss of 0.145 at 100 Hz with 4 wt% of blowing agent content. Also, DC conductivity was achieved at a maximum of 4.3110–7 S/m for a 4 wt% blowing agent loading. The mechanical characteristics such as tensile strength, tear strength, and tensile modulus increased with a rise in xGnP loading but elongation at break decreased. The studied EVA/EOC/xGnP foam composites can be utilized in potential electronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig.6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this manuscript.

References

  1. Z.L. Wang, J. Song, Science 312, 242 (2006)

    Article  CAS  Google Scholar 

  2. Z.M. Dang, J.K. Yuan, J.W. Zha, T. Zhou, S.T. Li, G.H. Hu, Prog. Mater. Sci. 57, 660–723 (2012)

    Article  CAS  Google Scholar 

  3. N. Xu, L. Hu, Q. Zhang, X. Xiao, H. Yang, E. Yu, ACS Appl. Mater. Interfaces 7, 27373–27381 (2015)

    Article  CAS  Google Scholar 

  4. D. He, Y. Wang, S. Song, S. Liu, Y. Deng, ACS Appl. Mater. Interfaces 9, 44839–44846 (2017)

    Article  CAS  Google Scholar 

  5. C. Yang, Y. Lin, C.W. Nan, Carbon 47, 1096 (2009)

    Article  CAS  Google Scholar 

  6. H. Liu, Y. Shen, Y. Song, C.W. Nan, Y. Lin, X. Yang, Adv. Mater. 23, 5104 (2011)

    Article  CAS  Google Scholar 

  7. N.G. Martinelli, M. Savini, L. Muccioli, Y. Olivier, F. Castet, C. Zannoni, Adv. Funct. Mater. 19, 3254 (2009)

    Article  CAS  Google Scholar 

  8. J. Gao, K. Asadi, J.B. Xu, J. An, Appl. Phys. Lett. 94, 093302 (2009)

    Article  Google Scholar 

  9. A. Dimiev, W. Lu, K. Zeller, B. Crowgey, L.C. Kempel, J.M. Tour, ACS Appl. Mater. Interfaces 3, 4657 (2011)

    Article  CAS  Google Scholar 

  10. R. Verdejo, P. Werner, J. Sandler, V. Altstadt, M.S.P. Shaffer, J. Mater. Sci. 44, 1427 (2009)

    Article  CAS  Google Scholar 

  11. M. Rong, M. Zhang, Y. Zhang, J. Mater. Sci. Lett. 19, 1159 (2000)

    Article  CAS  Google Scholar 

  12. A.D. Price, V.C. Kao, J.X. Zhang, H.E. Naguib, Synth. Met. 160, 1832 (2010)

    Article  CAS  Google Scholar 

  13. K.M. You, S.S. Park, C. Lee, J.M. Kim, G.P. Park, W.N. Kim, J. Mater Sci. 46, 6850 (2011)

    Article  CAS  Google Scholar 

  14. Y. Yang, M.C. Gupta, K.L. Dudley, Adv. Mater. 17, 1999 (2005)

    Article  CAS  Google Scholar 

  15. B. Zhao, M. Hamidinejad, C. Zhao, R. Li, S. Wang, K. Yasamin, C.B. Park, J. Mater. Chem. A 6, 10292–10300 (2018)

    CAS  Google Scholar 

  16. P.C. Bandyopadhyay, A.K. Banthia, T.K. Chaki, AngewMakromol Chem. 120, 61 (1984)

    CAS  Google Scholar 

  17. S.P. Mahapatra, V. Sridhar, D.K. Tripathy, J. Appl. Polym. Sci. 106, 192 (2007)

    Article  CAS  Google Scholar 

  18. S. Das, P.G.R. Achary, N.C. Nayak, R.N.P. Choudhary, Polym. Compos. 37, 3398–3410 (2015)

    Article  Google Scholar 

  19. Y.L. Yang, M.C. Gupta, K.L. Dudley, R.W. Lawrence, Nano Lett. 5, 2131 (2005)

    Article  CAS  Google Scholar 

  20. D.S. McLachlan, C. Chiteme, W.D. Heiss, J. Wu, Phys. B: Condens. Matter 338, 261 (2003)

    Article  CAS  Google Scholar 

  21. X.B. Xu, Z.M. Li, L. Shi, X.C. Bian, Z.D. Xiang, Small 3, 408 (2007)

    Article  CAS  Google Scholar 

  22. J.M. Thomassin, C. Pagnoulle, L. Bednarz, I. Huynen, R. Jerome, C. Detrembleur, J. Mater. Chem. 18, 792 (2008)

    Article  CAS  Google Scholar 

  23. G. Harikrishnan, S.N. Singh, E. Kiesel, C.W. Macosko, Polymer 51, 3349 (2010)

    Article  CAS  Google Scholar 

  24. M.P. Tran, C. Detrembleur, M. Alexandre, C. Jerome, J.M. Thomassin, Polymer 54, 3261 (2013)

    Article  CAS  Google Scholar 

  25. M.C. Hermant, M. Verhulst, A.V. Kyrylyuk, B. Klumperman, C.E. Koning, Compos. Sci. Tech. 69, 656 (2009)

    Article  CAS  Google Scholar 

  26. H.B. Zhang, Q. Yan, W.G. Zheng, Z. He, Z.Z. Yu, ACS Appl. Mater. Interfaces 3, 918 (2011)

    Article  CAS  Google Scholar 

  27. M. Antunes, M. Mudarra, J.I. Velasco, Carbon 49, 708 (2011)

    Article  CAS  Google Scholar 

  28. A. Ameli, P.U. Jung, C.B. Park, Carbon 60, 379 (2013)

    Article  CAS  Google Scholar 

  29. A. Ameli, P.U. Jung, C.B. Park, Compos. Sci. Technol. 76, 37 (2013)

    Article  CAS  Google Scholar 

  30. A. Ameli, M. Nofar, C.B. Park, P. Potschke, G. Rizvi, Carbon 71, 206–415 (2014)

    Article  CAS  Google Scholar 

  31. W. Hofmann, Rubber Technology Handbook (Oxford University Press, New York, 1989)

    Google Scholar 

  32. S. Das, P.G.R. Achary, N.C. Nayak, R.N.P. Choudhary, Polym. Compos. 37, 342–352 (2014)

    Article  Google Scholar 

  33. S.T. Lee, C.B. Park, N.S. Ramesh, Polymeric Foams: Science and Technology (CRC Press, London, 2006)

    Book  Google Scholar 

  34. S.S. Hwang, S.P. Liu, P.P. Hsu, J.M. Yeh, J.P. Yang, C.L. Chen, Int. Commun. Heat Mass Transf. 39, 383–389 (2012)

    Article  CAS  Google Scholar 

  35. C. Min, D. Yu, Polym. Eng. Sci. 50, 9 (2010)

    Article  Google Scholar 

  36. J. Plocharski, W. Wieczoreck, Solid State Ion 2, 979–982 (1988)

    Article  Google Scholar 

  37. X. Xia, J. Hao, Y. Wang, Z. Zhong, G.J. Weng, J. Phys. Condens. Matter. 29, 20 (2017)

    Google Scholar 

  38. R. Dhar, Indian J. Pure Appl. Phys. 42, 56 (2004)

    CAS  Google Scholar 

  39. R.K. Mishra, D.K. Pradhan, R.N.P. Choudhary, A. Banerjee, J. Phys. Condens. Matter 20, 45218–45224 (2008)

    Article  Google Scholar 

  40. B. Mohanty, B.N. Parida, R.K. Parida, Mater. Chem. Phys. 225, 91–98 (2019)

    Article  CAS  Google Scholar 

  41. S. Sahoo, P.K. Mahapatra, R.N.P. Choudhary, J. Phys. D. 49, 35302 (2016)

    Article  Google Scholar 

  42. S.R. Dhakate, R.B. Mathur, S. Sharma, M. Borah, T.L. Dhami, Energy Fuels 23, 934–941 (2009)

    Article  CAS  Google Scholar 

  43. M. Hamidinejad, B. Zhao, A. Zandieh, N. Moghimian, T. Filleter, C.B. Park, ACS Appl. Mater. Interfaces 10(36), 30752–30761 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Nimai C. Nayak sincerely thanks the Board of Research in Nuclear Sciences (BRNS), Department of Atomic Energy; Govt. Of India, for financially supporting for this work vide grant No-37(3)/14/24/2017-BRNS

Funding

This work was supported by funding from DAE-BRNS-Govt. of INDIA vide Grant No. No-37(3)/14/24/2017-BRNS.

Author information

Authors and Affiliations

Authors

Contributions

NCN involved in conceptualization, visualization, methodology, project administration, funding acquisition, resources, investigation, formal analysis, and writing—review and editing. SP involved in investigation, formal analysis, data curation, software, and writing—original draft, RM involved in investigation, formal analysis, data curation, and draft. BNP involved in investigation, formal analysis, and editing. RKP involved in investigation, formal analysis, and editing.

Corresponding author

Correspondence to Nimai C. Nayak.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

Ethical standard have been maintained during the investigation and preparation of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parida, S., Malik, R., Parida, R.K. et al. Dielectric behavior of EVA/EOC/xGnP ternary microcellular nanocomposites. J Mater Sci: Mater Electron 33, 23693–23702 (2022). https://doi.org/10.1007/s10854-022-09128-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09128-2

Navigation