Skip to main content

Advertisement

Log in

Hollow FeOOH nanorods decorated with MnO2 nanosheets as electrode materials for high-performance asymmetric supercapacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nano core–shell structured materials have different or better properties than single components, which can realize the design and optimization of nanoscale particle structure and properties. Additionally, hollow core–shell materials have the advantages of large specific surface area, abundant active sites, low density, short mass transfer path, and wide cavity structure, which are widely used in the fields of electrochemistry, biomedicine, and environmental protection. Herein, hollow core–shell FeOOH@MnO2 nanorod composites were prepared by easiest hydrothermal method. Due to the synergy and versatility between the hollow FeOOH nanorods core and the MnO2 nanosheets shell, the FeOOH@MnO2 composite exhibits outstanding electrochemical characteristic as an electrode material with specific capacitance of 924 F g−1 at 1 A g−1, admirable rate capability (capacitance retention of 75.9% from 1 to 10 A g−1), and remarkable cycling stability (91.2% of initial capacity retained after 5000 charge/discharge cycles). Notably, the assembled FeOOH@MnO2//activated carbon (AC) asymmetric supercapacitor facility possessed an energy density of 53.4 Wh kg−1 and a power density of 722 W kg−1, indicating that the hollow core–shell FeOOH@MnO2 nanorod nanocomposite is a viable electrode material that can be used in supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article [and its supplementary information files].

References

  1. X. Mu, H. Pan, P. He, H. Zhou, Li-CO2 and Na-CO2 batteries: toward greener and sustainable electrical energy storage. Adv. Mater. 32, 1903790 (2020)

    CAS  Google Scholar 

  2. S. Corujeira Gallo, X. Li, K. Futterer, C.A. Charitidis, H. Dong, Carbon nanofibers functionalized with active screen plasma-deposited metal nanoparticles for electrical energy storage devices. ACS Appl. Mater. Interfaces 9, 23195 (2017)

    Article  CAS  Google Scholar 

  3. M.K. Debe, Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486, 43 (2012)

    Article  CAS  Google Scholar 

  4. B. Dunn, H. Kamath, J.M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334, 928 (2011)

    Article  CAS  Google Scholar 

  5. K. Thiagarajan, T. Bavani, P. Arunachalam, S.J. Lee, J. Theerthagiri, J. Madhavan, B.G. Pollet, M.Y. Choi, Nanofiber NiMoO4/g-C3N4 composite electrode materials for redox supercapacitor applications. Nanomaterials 10, 39201 (2020)

    Article  Google Scholar 

  6. X. Gong, S. Li, P.S. Lee, A fiber asymmetric supercapacitor based on FeOOH/PPy on carbon fibers as an anode electrode with high volumetric energy density for wearable applications. Nanoscale 9, 10794 (2017)

    Article  CAS  Google Scholar 

  7. X. Zhang, W. Yang, A. Liu, Z. Guo, J. Mu, J. Hou, H. Che, Anchoring mesoporous Fe3O4 nanospheres onto N-doped carbon nanotubes toward high-performance composite electrodes for supercapacitors. Ceram. Int. 46, 22373 (2020)

    Article  CAS  Google Scholar 

  8. P. Zhao, Z. Cai, L. Wu, C. Zhu, L. Li, X. Wang, Perspectives and challenges for lead-free energy-storage multilayer ceramic capacitors. J. Adv. Ceram. 10, 1153 (2021)

    Article  CAS  Google Scholar 

  9. T. Wang, H.C. Chen, F. Yu, X.S. Zhao, H. Wang, Boosting the cycling stability of transition metal compounds-based supercapacitors. Energy Storage Mater. 16, 545 (2019)

    Article  Google Scholar 

  10. Z. Zheng, W. Wu, T. Yang, E. Wang, Z. Du, X. Hou, T. Liang, H. Wang, In situ reduced MXene/AuNPs composite toward enhanced charging/discharging and specific capacitance. J. Adv. Ceram. 10, 1061 (2021)

    Article  CAS  Google Scholar 

  11. M. Guo, Y. Liu, F. Zhang, F. Cheng, C. Cheng, Y. Miao, F. Gao, J. Yu, Inactive Al3+-doped La(CoCrFeMnNiAlx)1/(5+x)O3 high-entropy perovskite oxides as high performance supercapacitor electrodes. J. Adv. Ceram. 11, 742 (2022)

    Article  CAS  Google Scholar 

  12. Y. Zeng, M. Yu, Y. Meng, P. Fang, X. Lu, Y. Tong, Iron-based supercapacitor electrodes: advances and challenges. Adv. Energy Mater. 6, 1601053 (2016)

    Article  Google Scholar 

  13. Q.Z. Zhang, D. Zhang, Z.C. Miao, X.L. Zhang, S.L. Chou, Research progress in MnO2-carbon based supercapacitor electrode materials. Small 14, e1702883 (2018)

    Article  Google Scholar 

  14. S. Ji, J. Yang, J. Cao, X. Zhao, M.A. Mohammed, P. He, R.A.W. Dryfe, I.A. Kinloch, A universal electrolyte formulation for the electrodeposition of pristine carbon and polypyrrole composites for supercapacitors. ACS Appl. Mater. Interfaces 12, 13386 (2020)

    Article  CAS  Google Scholar 

  15. P. Olejnik, M. Gniadek, L. Echegoyen, M.E. Plonska-Brzezinska, Nanoforest: polyaniline nanotubes modified with carbon nano-onions as a nanocomposite material for easy-to-miniaturize high-performance solid-state supercapacitors. Polymers 10, 140801 (2018)

    Article  Google Scholar 

  16. L. Liu, J. Lang, P. Zhang, B. Hu, X. Yan, Facile synthesis of Fe2O3 nano-dots@nitrogen-doped graphene for supercapacitor electrode with ultralong cycle life in KOH electrolyte. ACS Appl. Mater. Interfaces 8, 9335 (2016)

    Article  CAS  Google Scholar 

  17. H. Fan, R. Niu, J. Duan, W. Liu, W. Shen, Fe3O4@Carbon nanosheets for all-solid-state supercapacitor electrodes. ACS Appl. Mater. Interfaces 8, 19475 (2016)

    Article  CAS  Google Scholar 

  18. Y. Ma, C. Hou, H. Zhang, Q. Zhang, H. Liu, S. Wu, Z. Guo, Three-dimensional core-shell Fe3O4/Polyaniline coaxial heterogeneous nanonets: preparation and high performance supercapacitor electrodes. Electrochim. Acta 315, 114 (2019)

    Article  CAS  Google Scholar 

  19. X. Wang, D. Jiang, C. Jing, X. Liu, K. Li, M. Yu, S. Qi, Y. Zhang, Biotemplate synthesis of Fe3O4/polyaniline for supercapacitor. J. Energy Storag. 30, 101554 (2020)

    Article  Google Scholar 

  20. J. Ding, J. Yang, S. Ji, S. Huo, H. Wang, Core-shell structured Fe3O4@MnO2 nanospheres to achieve high cycling stability as electrode for supercapacitors. Ionics 25, 665 (2018)

    Article  Google Scholar 

  21. J. Zhu, S. Tang, H. Xie, Y. Dai, X. Meng, Hierarchically porous MnO2 microspheres doped with homogeneously distributed Fe3O4 nanoparticles for supercapacitors. ACS Appl. Mater. Interfaces 6, 17637 (2014)

    Article  CAS  Google Scholar 

  22. C. Sun, W. Pan, D. Zheng, Y. Zheng, J. Zhu, C. Liu, Low-crystalline FeOOH nanoflower assembled mesoporous film anchored on MWCNTs for high-performance supercapacitor electrodes. ACS Omega 5, 4532 (2020)

    Article  CAS  Google Scholar 

  23. Y. Chen, C. Jing, X. Fu, M. Shen, T. Cao, W. Huo, X. Liu, H.-C. Yao, Y. Zhang, K.X. Yao, In-situ fabricating MnO2 and its derived FeOOH nanostructures on mesoporous carbon towards high-performance asymmetric supercapacitor. Appl. Surf. Sci. 503, 144123 (2020)

    Article  CAS  Google Scholar 

  24. D. Zhang, X. Kong, F. Zhang, X. Lei, Electric-field-assisted enhanced electron transfer to boost supercapacitor negative electrode performance for a fabricated Fe7S8/α-FeOOH nano-heterostructure. Adv. Electron. Mater. 6, 1900953 (2019)

    Article  Google Scholar 

  25. Y. Wu, G. Gao, H. Yang, W. Bi, X. Liang, Y. Zhang, G. Zhang, G. Wu, Controlled synthesis of V2O5/MWCNT core/shell hybrid aerogels through a mixed growth and self-assembly methodology for supercapacitors with high capacitance and ultralong cycle life. J. Mater. Chem. A 3, 15692 (2015)

    Article  CAS  Google Scholar 

  26. W. Bi, G. Gao, Y. Wu, H. Yang, J. Wang, Y. Zhang, X. Liang, Y. Liu, G. Wu, Novel three-dimensional island-chain structured V2O5/graphene/MWCNT hybrid aerogels for supercapacitors with ultralong cycle life. RSC Adv. 7, 7179 (2017)

    Article  CAS  Google Scholar 

  27. N.S. McIntyre, D.G. Zetaruk, X-ray photoelectron spectroscopic studies of iron oxides. Anal. Chem. 49, 1521 (1977)

    Article  CAS  Google Scholar 

  28. I.D. Welsh, P.M. Sherwood, Photoemission and electronic structure of FeOOH: distinguishing between oxide and oxyhydroxide. Phys. Rev. B 40, 6386 (1989)

    Article  CAS  Google Scholar 

  29. K. Xu, W. Li, Q. Liu, B. Li, X. Liu, L. An, Z. Chen, R. Zou, J. Hu, Hierarchical mesoporous NiCo2O4@MnO2 core–shell nanowire arrays on nickel foam for aqueous asymmetric supercapacitors. J. Mater. Chem. A. 2, 4795 (2014)

    Article  CAS  Google Scholar 

  30. W.D. Chemelewski, H.C. Lee, J.F. Lin, A.J. Bard, C.B. Mullins, Amorphous FeOOH oxygen evolution reaction catalyst for photoelectrochemical water splitting. J. Am. Chem. Soc. 136, 2843 (2014)

    Article  CAS  Google Scholar 

  31. A.A. Mohammed, C. Chen, Z. Zhu, Green and high performance all-solid-state supercapacitors based on MnO2/Faidherbia albida fruit shell derived carbon sphere electrodes. J. Power Sources 417, 1 (2019)

    Article  CAS  Google Scholar 

  32. J. Wang, J. Polleux, J. Lim, B. Dunn, Pseudocapacitive contributions to electrochemical energy storage in TiO2 (Anatase) nanoparticles. J. Phys. Chem. C. 111, 14925 (2007)

    Article  CAS  Google Scholar 

  33. M. Yin, X. Feng, D. Zhao, Y. Zhao, H. Li, W. Zhou, H. Liu, X. Bai, H. Wang, C. Feng, Q. Jiao, Hierarchical Co9S8@carbon hollow microspheres as an anode for sodium ion batteries with ultralong cycling stability. ACS Sustain. Chem. Eng. 7, 6122 (2019)

    Article  CAS  Google Scholar 

  34. R. Barik, B.K. Jena, M. Mohapatra, Metal doped mesoporous FeOOH nanorods for high performance supercapacitors. RSC Adv. 7, 49083 (2017)

    Article  CAS  Google Scholar 

  35. S.W. Bokhari, H. Pan, A.H. Siddique, M. Imtiaz, Z. Chen, Y. Li, S. Zhu, Self-assembly of β-FeOOH/rGO/CNT for a high-performance supercapacitor. Mater. Lett. 220, 140 (2018)

    Article  CAS  Google Scholar 

  36. J. Li, D. Chen, Q. Wu, X. Wang, Y. Zhang, Q. Zhang, FeOOH nanorod arrays aligned on eggplant derived super long carbon tube networks as negative electrodes for supercapacitors. New J. Chem. 42, 4513 (2018)

    Article  CAS  Google Scholar 

  37. C. Long, L. Jiang, T. Wei, J. Yan, Z. Fan, High-performance asymmetric supercapacitors with lithium intercalation reaction using metal oxide-based composites as electrode materials. J. Mater. Chem. A. 2, 16678 (2014)

    Article  CAS  Google Scholar 

  38. Y. Lv, H. Che, A. Liu, J. Mu, C. Dai, X. Zhang, Y. Bai, G. Wang, Z. Zhang, Urchin-like α-FeOOH@MnO2 core–shell hollow microspheres for high-performance supercapacitor electrode. J. Appl. Electrochem. 47, 433 (2017)

    Article  CAS  Google Scholar 

  39. C. Xia, M. Leng, B. Yuan, D. Zhang, W. Tao, X. Chai, G. Kong, Three-dimensional carbon nanotubes/iron oxyhydroxide shell/core hybrid as a binder-free electrode for the flexible supercapacitor. J Nanopart. Res. 22, 1110 (2020)

    Article  Google Scholar 

  40. T. Xiao, C. Yang, Y. Lu, F. Zeng, One-pot hydrothermal synthesis of rod-like FeOOH/reduced graphene oxide composites for supercapacitor. Mater. Sci. Mater. Electron. 25, 3364 (2014)

    Article  CAS  Google Scholar 

  41. M. Zhu, Q. Chen, J. Tang, W. Wei, S. Li, Core@shell β-FeOOH@polypyrolle derived N, S-codoped Fe3O4@N-doped porous carbon nanococoons for high performance supercapacitors. Appl. Surf. Sci. 480, 582 (2019)

    Article  CAS  Google Scholar 

  42. Q. Chen, W. Wei, J. Tang, J. Lin, S. Li, M. Zhu, Dopamine-assisted preparation of Fe3O4@MnO2 yolk@shell microspheres for improved pseudocapacitive performance. Electrochim. Acta. 317, 628 (2019)

    Article  CAS  Google Scholar 

  43. Q.J. Le, T. Wang, D.N.H. Tran, F. Dong, Y.X. Zhang, D. Losic, Morphology-controlled MnO2 modified silicon diatoms for high-performance asymmetric supercapacitors. J. Mater. Chem. A. 5, 10856 (2017)

    Article  CAS  Google Scholar 

  44. P. Wu, M. Gao, S. Yu, M. Feng, S. Liu, J. Fu, MnO2 nanosheets grown on N and P Co-doped hollow carbon microspheres for high performance asymmetric supercapacitor. Electrochim. Acta 354, 136681 (2020)

    Article  CAS  Google Scholar 

  45. K. Li, X. Liu, T. Zheng, D. Jiang, Z. Zhou, C. Liu, X. Zhang, Y. Zhang, D. Losic, Tuning MnO2 to FeOOH replicas with bio-template 3D morphology as electrodes for high performance asymmetric supercapacitors. Chem. Eng. J. 370, 136 (2019)

    Article  CAS  Google Scholar 

  46. G. Wei, K. Du, X. Zhao, C. Li, J. Li, K. Ren, Y. Huang, H. Wang, S. Yao, C. An, Integrated FeOOH nanospindles with conductive polymer layer for high-performance supercapacitors. J. Alloys Compd. 728, 631 (2017)

    Article  CAS  Google Scholar 

  47. F. Lin, M. Yuan, Y. Chen, Y. Huang, J. Lian, J. Qiu, H. Xu, H. Li, S. Yuan, Y. Zhao, S. Cao, Advanced asymmetric supercapacitor based on molybdenum trioxide decorated nickel cobalt oxide nanosheets and three-dimensional α-FeOOH/rGO. Electrochim. Acta. 320, 134580 (2019)

    Article  CAS  Google Scholar 

  48. J. Li, M. Yin, C. Guo, H. Zhang, T. Li, H. Wang, Y. Wei, L. Hou, C. Jia, Belt-like MnO2 cathode to enable high energy density and ultra-stable aqueous asymmetric supercapacitor. Surf Coat Technol. 359, 175 (2019)

    Article  CAS  Google Scholar 

  49. Q. Wang, Y. Ma, X. Liang, D. Zhang, M. Miao, Flexible supercapacitors based on carbon nanotube-MnO2 nanocomposite film electrode. Chem. Eng. J. 371, 145 (2019)

    Article  CAS  Google Scholar 

  50. K. Du, G. Wei, F. Zhao, C. An, H. Wang, J. Li, C. An, Urchin-like FeOOH hollow microspheres decorated with MnO2 for enhanced supercapacitor performance. Sci. China Mater. 61, 48 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Hebei Province (Grant No. E2020402009), Hebei Province Introducing Overseas Talent Funding Project (Grant No. C20210310), Handan Municipal Science and Technology Bureau (Grant No. 19422111008-26), Science and Technology Project of Hebei Education Department (Grant No. QN2022121), and Hebei Province Graduate Innovation Funding Project (Grant No. CXZZSS2022027).

Funding

This work was supported by the Natural Science Foundation of Hebei Province (Grant No. E2020402009), Hebei Province Introducing Overseas Talent Funding Project (Grant No. C20210310), Handan Municipal Science and Technology Bureau (Grant No. 19422111008-26), Science and Technology Project of Hebei Education Department (Grant No. QN2022121), and Hebei Province Graduate Innovation Funding Project (Grant No. CXZZSS2022027).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation was performed by LT, CW, JY, JM, XZ. Data collection and analysis were performed by JH, ZW, YW, HC, and ZZ. The first draft of the manuscript was written by Lin Tong and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Xiaoliang Zhang or Zhixiao Zhang.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose. The authors declare that they do not have any potential conflicts of interest.

Ethical approval

The submission has been approved by all co-authors and the responsible authorities at the institute where the work has been carried out.

Research involving human and/or animal participants

The authors declare that they do not involve human participants and/or animals in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1746 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, L., Wu, C., Hou, J. et al. Hollow FeOOH nanorods decorated with MnO2 nanosheets as electrode materials for high-performance asymmetric supercapacitors. J Mater Sci: Mater Electron 33, 23607–23622 (2022). https://doi.org/10.1007/s10854-022-09120-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09120-w

Navigation