Skip to main content
Log in

Effect of annealing on structural, morphological and optical properties of InSe thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Indium selenide (InSe), a member of chalcogenide semiconductors, has attracted immense attention due to its wide range of technological applications in solar cells, data storage, switching devices and diodes. In the present study, InSe thin films are deposited using thermal evaporation method, and post-annealing treatment has been performed in vacuum at different temperatures (150 °C, 200 °C, and 250 °C) to induce changes in structural, morphological and optical properties. As-deposited InSe thin film has monoclinic phase, and the crystallinity is found to increase with annealing at 150 °C and 200 °C. The phase transition from crystalline to amorphous phase is achieved with annealing at higher temperature (250 °C). The drastic change in the morphology with annealing temperature is clearly visible in field emission scanning electron microscope (FE-SEM) images. With annealing, the average transmission in the wavelength range of 900–2400 nm increases, and also the value of optical band gap increases from 1.12 to 1.42 eV. The observed change in the transmission and optical band gap is due to change in density of localized and/or delocalized defect states in the forbidden gap with post-annealing treatment. These results show that the post-annealing treatment has significant impact on structural, morphological and optical properties of InSe thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. D. Andres-Penares, R. Canet-Albiach, J. Noguera-Gomez, J.P. Martínez-Pastor, R. Abargues, J.F. Sánchez-Royo, J. Nanomater. 10(7), 1396 (2020)

    Article  CAS  Google Scholar 

  2. M. Xu, X. Mai, J. Lin, W. Zhang, Y. Li, Y. He, H. Tong, X. Hou, P. Zhou, X. Miao, Adv. Funct. Mater. 30(50), 2003419 (2020)

    Article  CAS  Google Scholar 

  3. P. Singh, N. Ghorai, A. Thakur, H.N. Ghosh, J. Phys. Chem. 125(9), 5197 (2021)

    CAS  Google Scholar 

  4. Z. Zhang, Y. Yuan, W. Zhou, C. Chen, S. Yuan, H. Zeng, Y.S. Fu, W. Zhang, ACS Nano 15(6), 10700 (2021)

    Article  Google Scholar 

  5. P. Singh, R. Kaur, P. Sharma, V. Sharma, A. Thakur, J. Mater. Sci. 29(2), 1042 (2018)

    CAS  Google Scholar 

  6. J. Sharma, R. Singh, H. Singh, T. Singh, P. Singh, A. Thakur, S.K. Tripathi, J. Alloys Compd. 724, 62 (2017)

    Article  CAS  Google Scholar 

  7. R. Anuroop, B. Pradeep, Mater. Sci. Technol. 98, 19 (2019)

    CAS  Google Scholar 

  8. P. Li, N. Yu, J. Wang, J. Phys. D 53(28), 285101 (2020)

    Article  CAS  Google Scholar 

  9. K. Aryana, J.T. Gaskins, J. Nag, D.A. Stewart, Z. Bai, S. Mukhopadhyay, J.C. Read, D.H. Olson, E.R. Hoglund, J.M. Howe, A. Giri, M.K. Grobis, P.E. Hopkins, Nat. Commun. 12(1), 1 (2021)

    Article  Google Scholar 

  10. P.D. Patil, S. Ghosh, M. Wasala, S. Lei, R. Vajtai, P.M. Ajayan, A. Ghosh, S. Talapatra, ACS Nano 13(11), 13413 (2019)

    Article  CAS  Google Scholar 

  11. I. Alves Oliveira, I.L. Gomes de Souza, V.F. Rodriguez-Esquerre, Sci. Rep. 11(1), 1 (2021)

    Article  Google Scholar 

  12. H. Lu, G.M. Carroll, N.R. Neale, M.C. Beard, ACS Nano 13(2), 939 (2019)

    CAS  Google Scholar 

  13. Y. Tang, Copper Indium Gallium Selenide Thin Film Solar Cells (IntechOpen, London, 2017)

    Book  Google Scholar 

  14. J. Kang, S.A. Wells, V.K. Sangwan, D. Lam, X. Liu, J. Luxa, Z. Sofer, M.C. Hersam, Adv. Mater. 30(38), 1802990 (2018)

    Article  Google Scholar 

  15. M.S. Choi, B.K. Cheong, C.H. Ra, S. Lee, J.H. Bae, S. Lee, G.D. Lee, C.W. Yang, J. Hone, W.J. Yoo, Adv. Mater. 29(42), 1703568 (2017)

    Article  Google Scholar 

  16. P. Singh, G. Kaur, N. Ghorai, T. Goswami, A. Thakur, H.N. Ghosh, Phys. Rev. Appl. 14(1), 014087 (2020)

    Article  CAS  Google Scholar 

  17. Q. Hao, J. Liu, G. Wang, J. Chen, H. Gan, J. Zhu, Y. Ke, Y. Chai, J. Lin, W. Zhang, ACS Nano 14(9), 11373 (2020)

    Article  CAS  Google Scholar 

  18. L. Liu, L. Wu, A. Wang, H. Liu, R. Ma, K. Wu, J. Chen, Z. Zhou, Y. Tian, H. Yang, C. Shen, L. Bao, Z. Qin, S.T. Pantelides, H.J. Gao, Nano Lett. 20(9), 6666 (2020)

    Article  CAS  Google Scholar 

  19. N. Curreli, M. Serri, D. Spirito, E. Lago, E. Petroni, B. Martín-García, A. Politano, B. Gürbulak, S. Duman, R. Krahne, V. Pellegrini, F. Bonaccorso, Adv. Funct. Mater. 30(13), 1908427 (2020)

    Article  CAS  Google Scholar 

  20. A. Qasem, N.M. Said, A.A. Hassan, H.A. Yakout, E.R. Shaaban, Physica B 627, 413600 (2022)

    Article  CAS  Google Scholar 

  21. F. Garibay-Martínez, J. Hernández-Borja, R. Ramírez-Bon, Optik 242, 167284 (2021)

    Article  Google Scholar 

  22. D. Zheng, J. Shiogai, K. Fujiwara, A. Tsukazaki, Appl. Phys. Lett. 113(25), 253501 (2018)

    Article  Google Scholar 

  23. N.C. Zoita, M. Dinu, A.E. Kiss, C. Logofatu, M. Braic, Appl. Surf. Sci. 537, 147903 (2021)

    Article  CAS  Google Scholar 

  24. H. Singh, P. Singh, F. Singh, A.P. Singh, A. Kumar, A. Thakur, Radiat. Phys. Chem. 191, 109863 (2022)

    Article  CAS  Google Scholar 

  25. K. Singh, S. Kumari, H. Singh, N. Bala, P. Singh, A. Kumar, A. Thakur, Appl. Nanosci. (2021). https://doi.org/10.1007/s13204-021-01911-7

    Article  Google Scholar 

  26. P. Singh, A.P. Singh, A. Thakur, J. Mater. Sci. 30(4), 3604 (2019)

    CAS  Google Scholar 

  27. P. Singh, R. Kaur, A. Kumar, A. Thakur, Opt. Quantum Electron. 49(9), 1 (2017)

    Article  CAS  Google Scholar 

  28. H. Ekinci, M. Soltani, N.M.S. Jahed, X. Zhu, B. Cui, D. Pushin, J. Alloys Compd. 875, 160087 (2021)

    Article  CAS  Google Scholar 

  29. H.C. Chang, C.L. Tu, K.I. Lin, J. Pu, T. Takenobu, C.N. Hsiao, C.H. Chen, Small 14(39), 1802351 (2018)

    Article  Google Scholar 

  30. X. Zhang, S. Lee, A. Bansal, F. Zhang, M. Terrones, T.N. Jackson, J.M. Redwing, J. Cryst. Growth 533, 125471 (2020)

    Article  CAS  Google Scholar 

  31. J. Cai, X. Han, X. Wang, X. Meng, Matter 2(3), 587 (2020)

    Article  Google Scholar 

  32. S.A. Wells, A. Henning, J.T. Gish, V.K. Sangwan, L.J. Lauhon, M.C. Hersam, Nano Lett. 18(12), 7876 (2018)

    Article  CAS  Google Scholar 

  33. B.K. Mondal, S.K. Mostaque, M.A. Islam, J. Hossain, RSC Adv. 11(23), 13751 (2021)

    Article  CAS  Google Scholar 

  34. A. Hussain, J.T. Luo, P. Fan, G. Liang, Z. Su, R. Ahmed, N. Ali, Q. Wei, S. Muhammad, A.R. Chaudhry, Y.Q. Fu, Appl. Surf. Sci. 505, 144597 (2020)

    Article  CAS  Google Scholar 

  35. S. Saha, M. Johnson, F. Altayaran, Y. Wang, D. Wang, Q. Zhang, Electrochemistry 1(3), 286 (2020)

    Google Scholar 

  36. S. Menezes, A.P. Samantilleke, B.W. Larson, Sci. Rep. 11(1), 1 (2021)

    Article  Google Scholar 

  37. P. Singh, A.P. Singh, N. Kanda, M. Mishra, G. Gupta, A. Thakur, Appl. Phys. Lett. 111(26), 261102 (2017)

    Article  Google Scholar 

  38. P. Singh, A.P. Singh, J. Sharma, A. Kumar, M. Mishra, G. Gupta, A. Thakur, Phys. Rev. Appl. 10(5), 054070 (2018)

    Article  CAS  Google Scholar 

  39. H. Singh, P. Singh, R. Singh, J. Sharma, A.P. Singh, A. Kumar, A. Thakur, Heliyon 5(11), e02933 (2019)

    Article  Google Scholar 

  40. P. Peranantham, Y.L. Jeyachandran, C. Viswanathan, N.N. Praveena, P.C. Chitra, D. Mangalaraj, S.K. Narayandass, Mater. Charact. 58(8–9), 756 (2007)

    Article  CAS  Google Scholar 

  41. A. Srivastava, S. Tiwari, J. Lal, S.A. Khan, Glass Phys. Chem 45(2), 111 (2019)

    Article  CAS  Google Scholar 

  42. A.M. Hassanien, A.A. Atta, M.M. El-Nahass, S.I. Ahmed, A.A. Shaltout, A.M. Al-Baradi, A. Alodhayb, A.M. Kamal, Opt. Quantum Electron. 52(4), 1 (2020)

    Article  Google Scholar 

  43. M. Chaudhary, V. Doiphode, P. Shinde, A. Punde, P. Vairale, Y. Hase, A. Waghmare, M. Prasad, S. Jadkar, Mater. Today 39, 1889 (2021)

    CAS  Google Scholar 

  44. E. Ghalehghafi, M.B. Rahmani, Mater. Sci. Semicond. Process. 137, 106243 (2022)

    Article  CAS  Google Scholar 

  45. J. Sahu, S. Kumar, V.S. Vats, P.A. Alvi, B. Dalela, S. Kumar, S. Dalela, J. Lumin. 243, 118673 (2022)

    Article  CAS  Google Scholar 

  46. A. Tiwari, P.P. Sahay, Opt. Mater. 110, 110395 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work is funded by University Grant Commission, New Delhi (Ref. No. 19/06/2016 (i) EU-V) and Department of Science and Technology, New Delhi under DST-SERB Research Project (File no. CRG/2018/001135), New Delhi, India.

Funding

Funding was provided by University Grant Commission (Grant No. Ref. No. 19/06/2016 (i) EU-V) and Department of Science and Technology, New Delhi (Grant No. File no. CRG/2018/001135).

Author information

Authors and Affiliations

Authors

Contributions

HS proposed the concept, performed the experiments, analysed the results and drafted the manuscript. SK and PS helped in designing the experiment and reviewed the manuscript. AK and AT monitored the proposed concept, helped in experimental designing and reviewed the manuscript.

Corresponding author

Correspondence to Anup Thakur.

Ethics declarations

Conflict of interest

The authors declared that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, H., Kumari, S., Singh, P. et al. Effect of annealing on structural, morphological and optical properties of InSe thin films. J Mater Sci: Mater Electron 33, 23599–23606 (2022). https://doi.org/10.1007/s10854-022-09118-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09118-4

Navigation