Skip to main content

Advertisement

Log in

Facile in situ synthesis of flexible porous polycarbazole/BCN nanocomposite as a novel electrode material for high-performance supercapacitor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Incorporation of novel 2D materials with conducting polymers have attracted increasing attention in the supercapacitor applications owing to their unique properties. In the present work, novel polycarbazole (PCz)/porous boron carbon nitride (BCN) nanocomposites were prepared in different ratio (30, 50, and 70 wt%) via facile in situ chemical oxidative polymerization method. The PCz-BCN nanocomposites was synthesized at room temperature using an easy and inexpensive chemical oxidative method. The structure and formation of nanocomposites were analysed by X-ray diffraction (XRD), Fourier Transform Infra-Red (FT-IR), Raman Spectroscopy, and X-ray Photoelectron Spectroscopy (XPS) characterization techniques. Furthermore, the structural morphology of the PCz-BCN nanocomposite-50 wt% was analysed by Field Emission-Scanning Electron Microscopy (FE-SEM) and High-Resolution Transmission Electron Microscopy (HR-TEM). The thermal behaviour of the as-prepared sample was analysed using Thermo Gravimetric Analysis (TGA) technique. Cyclic Voltammetry (CV), Galvanostatic Charge–Discharge (GCD), and Electrochemical Impedance Spectroscopy (EIS) studies were used to evaluate the electrochemical specific capacitive performance of the prepared electrode material at different scan rates and current density in the various potential windows. It was found that the orthorhombic crystalline nature of the polycarbazole incorporated well with the stacking layer of the sp2-hybridized graphitic BCN aromatic ring structure via the Van der Waals interaction. The PCz/BCN-50 wt% nanocomposite electrode material exhibits specific capacitance 134 F g−1 at current density of 3 mA g−1 in aqueous electrolyte 3 M KOH compared to the pure PCz and BCN. Furthermore, even after 800 cycles, the PCz-BCN nanocomposite electrode demonstrated excellent cyclic stability, because the improved enhancement of the specific capacitance of the conductive network of the PCz-BCN composite, as well as the synergistic effect of pure PCz and BCN, makes it a promising material for supercapacitor application. Hence, the facile in situ oxidative polymerization method of the synthesis of the porous PCZ-BCN nanocomposite is a promising route for producing electrode materials so as to fabricate high-performance supercapacitors in a cost-effective way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data that support the findings of this study are available upon reasonable request from the corresponding author [Dr. Stephen Arumainathan].

References

  1. Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, Y. Chen, J. Phys. Chem. C. 113(30), 13103–13107 (2009)

    Article  CAS  Google Scholar 

  2. W. Raza, F. Ali, N. Raza, Y. Luo, K.-H. Kim, J. Yang, S. Kumar, A. Mehmood, E.E. Kwon, Nano Energy 52, 441–473 (2018)

    Article  CAS  Google Scholar 

  3. S. Chabi, C. Peng, Z. Yang, Y. Xia, Y. Zhu, RSC Adv. 5(6), 3999–4008 (2015)

    Article  CAS  Google Scholar 

  4. Y. Yin, K. Feng, C. Liu, S. Fan, J. Phys. Chem. C 119(16), 8488–8491 (2015)

    Article  CAS  Google Scholar 

  5. F. Marchioni, J. Yang, W. Walker, F. Wudl, J. Phys. Chem. B 110(44), 22202–22206 (2006)

    Article  CAS  Google Scholar 

  6. D. Mohanadas, Y. Sulaiman, J. Power Sour. 523, 231029 (2022)

    Article  CAS  Google Scholar 

  7. I.V. Panasenko, M.O. Bulavskiy, A.A. Iurchenkova, Y. Aguilar-Martinez, F.S. Fedorov, E.O. Fedorovskaya, B. Mikladal, T. Kallio, A.G. Nasibulin, J. Power Sour. 541, 231691 (2022)

    Article  CAS  Google Scholar 

  8. S. Ramandi, M.H. Entezari, J. Power Sour. 538, 231588 (2022)

    Article  CAS  Google Scholar 

  9. Q. Wang, H. Song, W. Li, S. Wang, L. Liu, T. Li, Y. Han, J. Power Sour. 517, 230737 (2022)

    Article  CAS  Google Scholar 

  10. M. Shakir, I. Noore, M.S. Khan, S.I. Al-Resayes, A.A. Khan, U. Baig, Ind. Eng. Chem. Res. 53, 19 (2014)

    Google Scholar 

  11. S. Saravanan, C. Joseph Mathai, M.R. Anantharaman, S. Venkatachalam, P.V. Prabhakaran, J. Phys. Chem. Solids 67(7), 1496–1501 (2006)

    Article  CAS  Google Scholar 

  12. G. Suppes, B. Deore, M. Freund, Langmuir 24, 1064–1069 (2008)

    Article  CAS  Google Scholar 

  13. J. Zhang, X.S. Zhao, J. Phys. Chem. C 116(9), 5420–5426 (2012)

    Article  CAS  Google Scholar 

  14. H. Peng, X. Sun, W. Weng, X. Fang, Polymer Materials for Energy and Electronic Applications (Academic Press, Cambridge, 2017), pp.197–242

    Book  Google Scholar 

  15. Y. Li, X. Zhao, P. Yu, Q. Zhang, Langmuir 29(1), 493–500 (2013)

    Article  CAS  Google Scholar 

  16. D. Tu, H. Liao, Q. Deng, X. Liu, R. Shang, X. Zhang, RSC Adv. 8(39), 21905–21914 (2018)

    Article  CAS  Google Scholar 

  17. L. Chen, X. Wang, Chem. Commun. 53(88), 11988–11991 (2017)

    Article  CAS  Google Scholar 

  18. J. Wang, J. Hao, D. Liu, S. Qin, C. Chen, C. Yang, Y. Liu, T. Yang, Y. Fan, Y. Chen, W. Lei, Nanoscale 9(28), 9787–9791 (2017)

    Article  CAS  Google Scholar 

  19. S. Wang, G. Wang, T. Wu, Y. Zhang, F. Zhan, Y. Wang, J. Wang, Y. Fu, J. Qiu, J. Mater. Chem. A 6(30), 14644–14650 (2018)

    Article  CAS  Google Scholar 

  20. P. Praveena, M. Ann, D. Saminathan, K. Dharmalingam, T. Maiyalagan, V. Narayanan, S. Arumainathan, J. Mater. Sci. Mater. Electron. 5, 20 (2019). https://doi.org/10.1007/s10854-019-01198-z

    Article  CAS  Google Scholar 

  21. P. Praveena, S.A. Mathew, V. Narayanan, A. Stephen, AIP Conf. Proc. 2115(1), 030611 (2019)

    Article  Google Scholar 

  22. Y. Zhang, G. Wang, S. Wang, J. Wang, J. Qiu, J. Colloid Interface Sci. 552, 604–612 (2019)

    Article  CAS  Google Scholar 

  23. K. Sun, P. Guo, X. Shang, Y. Fu, P. Cheng, Q. Liu, Q. Weng, D. Liu, D. He, J. Electroanal. Chem. 842, 34–40 (2019)

    Article  CAS  Google Scholar 

  24. H. Khatoon, S. Iqbal, S. Ahmad, New J. Chem. 43(26), 10278–10290 (2019)

    Article  CAS  Google Scholar 

  25. S. Jadoun, A. Verma, U. Riaz, Spectrochim. Acta A Mol. Biomol. Spectrosc. 204, 64–72 (2018)

    Article  CAS  Google Scholar 

  26. V. Raj, D. Madheswari, M. Mubarak Ali, J. Appl. Polym. Sci. 116(1), 147–154 (2010)

    Article  CAS  Google Scholar 

  27. K. Sivaprakash, M. Induja, P. Gomathi Priya, Mater. Res. Bull. 100, 313–321 (2018)

    Article  CAS  Google Scholar 

  28. L. Wang, C. Wang, Z. Zhang, J. Wu, R. Ding, B. Lv, Appl. Surf. Sci. 422, 574–581 (2017)

    Article  CAS  Google Scholar 

  29. X. Xing, M. Zhang, L. Hou, L. Xiao, Q. Li, J. Yang, Int. J. Hydrogen Energy 42(47), 28434–28444 (2017)

    Article  CAS  Google Scholar 

  30. N. Lei, J. Li, Q. Song, Z. Liang, Int. J. Hydrogen Energy 44(21), 10498–10507 (2019)

    Article  CAS  Google Scholar 

  31. A.S. Sarac, Microelectron. Eng. 83(4), 1534–1537 (2006)

    Article  CAS  Google Scholar 

  32. R. Iyyamperumal, L. Zhang, G. Henkelman, R.M. Crooks, J. Am. Chem. Soc. 135(15), 5521–5524 (2013)

    Article  CAS  Google Scholar 

  33. U. Baig, W.A. Wani, L. Ting Hun, New J. Chem. 39(9), 6882–6891 (2015)

    Article  CAS  Google Scholar 

  34. S.S. Ghadikolaei, A. Omrani, M. Ehsani, Int. J. Biol. Macromol. 115, 266–272 (2018)

    Article  CAS  Google Scholar 

  35. H.-W. Zhang, Y.-Y. Li, W.-Q. Huang, B.-X. Zhou, S.-F. Ma, Y.-X. Lu, A.-L. Pan, G.-F. Huan, Carbon 148, 231–240 (2019)

    Article  CAS  Google Scholar 

  36. X. Qiu, Q. Liu, M. Song, C. Huang, J. Colloid Interface Sci. 477, 131–137 (2016)

    Article  CAS  Google Scholar 

  37. H. Jiang, S. Wang, B. Zhang, Y. Shao, Y. Wu, H. Zhao, Y. Lei, X. Hao, Chem. Eng. J. 396, 125207 (2020)

    Article  CAS  Google Scholar 

  38. S. Chen, H. Yang, Q. Chen, L. Liu, X. Hou, L. Luo, C. Lin, C. Li, Y. Chen, Electrochim. Acta 346, 136239 (2020)

    Article  CAS  Google Scholar 

  39. Y. Kang, Z. Chu, D. Zhang, G. Li, Z. Jiang, H. Cheng, X. Li, Carbon 61, 200–208 (2013)

    Article  CAS  Google Scholar 

  40. W.H. Lee, H.N. Yang, K.W. Park, B.S. Choi, S.C. Yi, W.J. Kim, Energy 96, 314–324 (2016)

    Article  CAS  Google Scholar 

  41. A. Mueller, M.G. Schwab, N. Encinas, D. Vollmer, H. Sachdev, K. Müllen, Carbon 84, 426–433 (2015)

    Article  CAS  Google Scholar 

  42. L. Kong, Q. Chen, X. Shen, C. Xia, Z. Ji, J. Zhu, Electrocheim Acta 245, 249–258 (2017)

    Article  CAS  Google Scholar 

  43. D. Chen, X. Hu, Y. Huang, Y. Qian, D. Li, Mater. Lett. 246, 28–31 (2019)

    Article  CAS  Google Scholar 

  44. R. Abinaya, J. Archana, S. Harish, M. Navaneethan, C. Muthamizhchelvan, S. Ponnusamy, H. Udono, R. Sugahara, Y. Hayakawa, M. Shimomura, J. Colloid Interface Sci. 584, 295–330 (2021)

    Article  CAS  Google Scholar 

  45. G. Greczynski, L. Hultman, Sci. Rep. 11(1), 11195 (2021)

    Article  CAS  Google Scholar 

  46. D.J. Morgan, C 7(3), 51 (2021)

    CAS  Google Scholar 

  47. X. Chen, X. Wang, D. Fang, Nanotub. Carbon Nanostruct. 28(120), 1048–1058 (2020)

    Article  CAS  Google Scholar 

  48. S. Ghosh, S. Barg, S.M. Jeong, K. Ostrikov, Adv. Energy Mater. 10(32), 2001239 (2020)

    Article  CAS  Google Scholar 

  49. X. Guo, L. Rao, P. Wang, L. Zhang, Y. Wang, Int. J. Environ. Res. Public Health 16(4), 2001239 (2019)

    Article  Google Scholar 

  50. M. Florent, T.J. Bandos, J. Mater. Chem. A 6(8), 3510–3521 (2018)

    Article  CAS  Google Scholar 

  51. K. He, J. Xie, M. Li, X. Li, Appl. Surf. Sci. 430, 208–217 (2018)

    Article  CAS  Google Scholar 

  52. P.S. Abthagir, R. Saraswathi, Thermochim. Acta 424(1), 25–35 (2004)

    Article  CAS  Google Scholar 

  53. M. Das, S. Roy, Mater. Today: Proc. 18, 5438–5446 (2019)

    CAS  Google Scholar 

  54. S.A. El-Sayed, M.E. Mostafa, Waste Biomass Valoriz. 6(3), 401–415 (2015)

    Article  CAS  Google Scholar 

  55. A. Thamir, H. Yusr, N. Jubier, J. Eng. Appl. Sci. 14, 567–574 (2019)

    Article  Google Scholar 

  56. S. Ahmad, A. Sultan, W. Raza, M. Muneer, F. Mohammad, J. Appl. Polym. Sci. 133(39), 133 (2016)

    Article  Google Scholar 

  57. H. Wang, Q. Hao, X. Yang, L. Lu, X. Wang, Nanoscale 2(10), 2164–2217 (2010)

    Article  CAS  Google Scholar 

  58. C. Lei, P. Wilson, C. Lekakou, Lancet 196, 7823–7827 (2011)

    CAS  Google Scholar 

  59. Z. Zhao, Y. Xie, J. Power Sour. 400, 264–276 (2018)

    Article  CAS  Google Scholar 

  60. Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya, L.-C. Qin, Phys. Chem. Chem. Phys. 13(39), 17615–17624 (2011)

    Article  CAS  Google Scholar 

  61. C. Lei, F. Markoulidis, Z. Ashitaka, C. Lekakou, Electrochim. Acta 92, 183–187 (2013)

    Article  CAS  Google Scholar 

  62. R. Reece, C. Lekakou, P.A. Smith, R. Grilli, C. Trapalis, J. Alloy Compds. 792, 582–593 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Author P. Praveena, sincerely thanks Mr. Rajagopal, Department of Energy, University of Madras for technical support. The University of Madras Research facility is acknowledged for FE-SEM, TGA/DTA, and FT-IR studies.

Author information

Authors and Affiliations

Authors

Contributions

The work was conceived and developed by author PP, and it was supervised by SA. The manuscript was revised and commented on by the authors SA and NV.

Corresponding author

Correspondence to Stephen Arumainathan.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panchatcharam, P., Vengidusamy, N. & Arumainathan, S. Facile in situ synthesis of flexible porous polycarbazole/BCN nanocomposite as a novel electrode material for high-performance supercapacitor. J Mater Sci: Mater Electron 33, 23580–23598 (2022). https://doi.org/10.1007/s10854-022-09117-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09117-5

Navigation