Skip to main content
Log in

Study on synthesis and growth methods of rod-like PbSe nanomaterials

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Due to the narrow band gap and high quantum confinement effects, Group IV–VI PbSe semiconductor materials have wide applications in infrared detectors. The morphology and size of nanomaterials affect the physical and chemical properties of PbSe semiconductor materials. Here, we developed a synthesized and grew PbSe-branched, I-shaped, and L-shaped nanorods method with uniform distribution by modulating the reaction environment. The results suggested that the arm length of the nanorods increased along the < 100 > axes with reaction time. The directional attachment of nanoparticles along the {100} plane was enhanced by appropriately increasing the reaction temperature. NH4Cl could promote the orientational attachment of PbSe nanocrystals along the {100} planes to form I-shaped and L-shaped nanorods. The PbSe-branched nanorod arms were uniformly distributed between 4.2 and 21 nm corresponding to an absorption spectrum between 1086 and 1574 nm and photoluminescence between 1301 and 1621 nm. This indicates that the optical properties are tunable in the near-infrared. Therefore, this research expands the potential applications of PbSe nanostructures in tunable infrared lasers, bioimaging, and solar cells, among others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. C. Buzea, I.L. Pacheco, K. Robbie, Biointerphases 2(4), 17–71 (2007). https://doi.org/10.1116/1.2815690

    Article  Google Scholar 

  2. T. Edvinsson, R. Soc. Open Sci. (2018). https://doi.org/10.1098/rsos.180387

    Article  Google Scholar 

  3. X.G. Peng, L. Manna, W.D. Yang, J. Wickham, A.P. Alivisatos, Nature 404(6773), 59–61 (2000). https://doi.org/10.1038/35003535

    Article  CAS  Google Scholar 

  4. D.J. Asunskis, I.L. Bolotin, L. Hanley, J. Phys. Chem. C 112(26), 9555–9558 (2008). https://doi.org/10.1021/jp8037076

    Article  CAS  Google Scholar 

  5. R.D. Schaller, Phys. Rev. Lett. 92(18), 186601 (2004). https://doi.org/10.1103/PhysRevLett.92.186601

    Article  CAS  Google Scholar 

  6. A. Rogalski, J. Antoszewski, L. Faraone, J. Appl. Phys. 105, 091101 (2009). https://doi.org/10.1063/1.3099572

    Article  CAS  Google Scholar 

  7. M. Liu, N. Yazdani, M. Yarema, M. Jansen, V. Wood, E.H. Sargent, Nat. Electron. 4, 548–558 (2021). https://doi.org/10.1038/S41928-021-00632-7

    Article  Google Scholar 

  8. J.S. Steckel, A.G. Pattantyus-Abraham, E. Josse, E. Mazaleyrat, K. Rochereau, Quantum Dot Photodetector Technology (Wiley Online Library, 2021), pp. 975–977.

  9. B. Zhu, M. Chen, S.V. Kershaw, A.L. Rogach, H.K. Tsang, 2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), 2017. https://doi.org/10.1109/CLEOPR.2017.8118904

  10. C. Katan, N. Mercier, J. Chem. Rev. 119(5), 3140–3192 (2019). https://doi.org/10.1021/acs/chemrev/8b00417

    Article  CAS  Google Scholar 

  11. S.U. Rehman, F.K. Butt, Z. Tariq, X. Zhang, J. Zheng, G. Naydenov, B. Ul Haq, Int. J. Energy Res. 45(4), 6369–6382 (2021). https://doi.org/10.1002/er.6174

    Article  CAS  Google Scholar 

  12. F.W. Wise, Acc. Chem. Res. 33(11), 773–780 (2000). https://doi.org/10.1021/ar970220q

    Article  CAS  Google Scholar 

  13. J.W. Mullin, Crystallization (Elsevier, Amsterdam, 2001), pp.86–134

    Book  Google Scholar 

  14. S.A. Mcdonald, G. Konstantatos, S. Zhang, P.W. Cyr, E. Klem, L. Levina, E.H. Sargent, Nat. Mater. 4(2), 138 (2005). https://doi.org/10.1038/nmat1299

    Article  CAS  Google Scholar 

  15. C.B. Murray, S.H. Sun, W. Gaschler, H. Doyle, T.A. Betley, C.R. Kagan, IBM J. Res. Dev. 45(1), 47–56 (2001). https://doi.org/10.1147/rd.451.0047

    Article  CAS  Google Scholar 

  16. R.H. Hertwig, W. Koch, Chem. Phys. Lett. 268(5–6), 345–351 (1997). https://doi.org/10.1016/S0009-2614(97)00207-8

    Article  CAS  Google Scholar 

  17. A. Shapiro, Y.J. Jang, A. Rubin-Brusilovski, A.K. Budniak, F. Horani, A. Sashchiuk, E. Lifshitz, Chem. Mater. 28(17), 6409–6416 (2016). https://doi.org/10.1021/acs.chemmater.6b02917

    Article  CAS  Google Scholar 

  18. J.M. Pietryga, D.J. Werder, D.J. Williams, J.L. Casson, R.D. Schaller, V.I. Klimov, J.A. Hollingsworth, J. Am. Chem. Soc. 130(14), 4879–4885 (2008). https://doi.org/10.1021/ja710437r

    Article  CAS  Google Scholar 

  19. M.H. Jang, P.M. Litwin, S.S. Yoo, S.J. Mcdonnell, M.C. Gupta, J. Appl. Phys. 126, 105701 (2019). https://doi.org/10.1063/1.5114923

    Article  CAS  Google Scholar 

  20. A. Rogalski, Opt. Eng. 42(12), 3498–3516 (2003). https://doi.org/10.1117/1.1625377

    Article  CAS  Google Scholar 

  21. W.W. Yu, J.C. Falkner, B.S. Shih, ChemInform (2004). https://doi.org/10.1002/chin.200443230

    Article  Google Scholar 

  22. B.L. Wehrenberg, C. Wang, P. Guyot-Sionnest, J. Phys. Chem. B 106(41), 10634–10640 (2002). https://doi.org/10.1021/jp021187e

    Article  CAS  Google Scholar 

  23. H. Li, D. Chen, L. Li, F. Tang, L. Zhang, J. Ren, CrystEngComm 12(4), 1127–1133 (2010). https://doi.org/10.1039/b917833c

    Article  CAS  Google Scholar 

  24. K.S. Cho, D.V. Talapin, W. Gaschler, C.B. Murray, J. Am. Chem. Soc. 127(19), 7140–7147 (2005). https://doi.org/10.1021/ja050107s

    Article  CAS  Google Scholar 

  25. S.C. Chiu, J.S. Jhang, J.F. Chen, J. Fang, W.B. Jian, Phys. Chem. Chem. Phys. 15(38), 16127–16131 (2013). https://doi.org/10.1039/c3cp52083h

    Article  CAS  Google Scholar 

  26. B. Li, Y. Xie, X. Yang, C. Wu, Z. Li, J. Solid State Chem. 179(1), 56–61 (2006). https://doi.org/10.1016/j.jssc.2005.09.043

    Article  CAS  Google Scholar 

  27. T. Sugimoto, Adv. Colloid Interface Sci. 28(1), 65–108 (1987). https://doi.org/10.1016/0001-8686(87)80009-X

    Article  CAS  Google Scholar 

  28. C. Fang, M. Huis, D. Vanmaekelbergh, H.W. Zandbergen, ACS Nano 4(1), 211 (2010). https://doi.org/10.1021/nn9013406

    Article  CAS  Google Scholar 

  29. Y. Gai, H. Peng, J. Li, J. Phys. Chem. C 113(52), 21506–21511 (2009). https://doi.org/10.1021/jp905868f

    Article  CAS  Google Scholar 

  30. C.R. Bealing, W.J. Baumgardner, J.J. Choi, T. Hanrath, R.G. Hennig, ACS Nano 6(3), 2118–2127 (2012). https://doi.org/10.1021/nn3000466

    Article  CAS  Google Scholar 

  31. L. Liu, Y.L. Cheng, X.L. Sun, F.W. Pi, Spectrochim. Acta A 197, 153–158 (2018). https://doi.org/10.1016/j.saa.2018.01.022

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 61275108), the Natural Science Foundation of Zhejiang Province (Grant No. LY19F050019), and the State Key lab of Silicon Materials, Zhejiang University (Grant No. 310027).

Author information

Authors and Affiliations

Authors

Contributions

ZXY contributed to methodology, performing laboratory experiments, and writing of the manuscript; GB contributed to conceptualization, supervision, and reviewing and editing of the manuscript; JXY contributed to reviewing and editing of the manuscript; ZYC performed laboratory experiments and data analysis; CFC contributed to reviewing and editing of the manuscript.

Corresponding authors

Correspondence to Gang Bi or Juxin Yin.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Z., Bi, G., Yin, J. et al. Study on synthesis and growth methods of rod-like PbSe nanomaterials. J Mater Sci: Mater Electron 33, 23515–23523 (2022). https://doi.org/10.1007/s10854-022-09112-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09112-w

Navigation