Skip to main content
Log in

Effect of La2O3 doping on microstructure and electrical properties of flash-sintered ZnO-Bi2O3 varistor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The crystal phase combination, relative density, microstructure, varistor properties and dielectric properties of La2O3-doped ZnO-Bi2O3-based varistor at a furnace temperature of 950 °C were investigated under the electric field of 300 V/cm within 35 s. Obtained samples were fully densified and uniform in microstructure. The effect of doping with different contents of La2O3 on flash-sintered ZnO-Bi2O3-based varistor was systematically studied. The results showed that when doping La2O3 was 0 mol%, 0.1 mol%, 0.2 mol% and 0.3 mol%, the densities of the samples were 91.5%, 90.5%, 96.1% and 95.1%, respectively. When the La2O3 doping amount was 0.2 mol%, the nonlinear coefficient was the highest of 32.9, the leakage current was the lowest of 1.1μA, and the dielectric loss was less than 0.1. Therefore, uniform microstructure and excellent electrical property can be obtained by preparing La2O3-doped ZnO varistor ceramic via flash sintering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. T.K. Gupta, Application-of-zinc-oxide-varistors. J. Am. Ceram. Soc. 73, 1817–1840 (1990)

    Article  CAS  Google Scholar 

  2. S. Shichimiya, M. Yamaguchi, N. Furuse, M. Kobayashi, S. Ishibe, Development of Advanced Arresters for GIS with New Zinc-oxide Elements. IEEE T. Power Deliver. 13, 465–471 (1998)

    Article  CAS  Google Scholar 

  3. S. Ezhilvalavan, T.R.N. Kutty, Dependence of non-linearity coefficients on transition metal oxide concentration in simplified compositions of ZnO+Bi2O3+MO varistor ceramics (M=Co or Mn). J. Mater. Sci-Mater. El. 7, 137–148 (1996)

    Article  CAS  Google Scholar 

  4. E.D. Kim, C.H. Kim, M.H. Oh, Role and effect of Co2O3 additive on the upturn characteristics of ZnO varistors. J. Appl. Phys. 58, 3231–3235 (1985)

    Article  CAS  Google Scholar 

  5. S. Ma, Z. Xu, R. Chu, J. Hao, M. Liu, L. Cheng, G. Li, Influence of Cr2O3 on ZnO-Bi2O3-MnO2-based varistor ceramics. Ceram. Int. 40, 10149–10152 (2014)

    Article  CAS  Google Scholar 

  6. Y.H. Kim, H. Kawamura, M. Nawata, The effect of Cr2O3 additive on the electrical properties of ZnO varistor. J. Mater. Sci. 32, 1665–1670 (1997)

    Article  Google Scholar 

  7. J. Ott, A. Lorenz, M. Harrer, E.A. Preissner, C. Hesse, A. Feltz, A.H. Whitehead, M. Schreiber, The Influence of Bi2O3 and Sb2O3 on the Electrical Properties of ZnO-Based Varistors. J. Electroceram. 6, 135–146 (2001)

    Article  CAS  Google Scholar 

  8. T. Senda, R.C. Bra, Grain growth of zinc oxide during the sintering of zinc oxide-antimony oxide ceramics. J. Am. Ceram. Soc. 74, 1296–1302 (1991)

    Article  CAS  Google Scholar 

  9. M.R.C. Santos, P.R. Bueno, E. Longo, J.A. Varela, Effect of oxidizing and reducing atmospheres on the electrical properties of dense SnO2-based varistors. J. Eur. Ceram. Soc. 21, 161–167 (2001)

    Article  CAS  Google Scholar 

  10. B. Du, M. Cai, X. Wang, J. Qian, C. He, A. Shui, Enhanced electromagnetic wave absorption property of binary ZnO/NiCo2O4 composites. J. Adv. Ceram. 10, 832–842 (2021)

    Article  CAS  Google Scholar 

  11. T. Yan, K. Chen, C. Li, M. Liu, J. Wang, L. Fang, L. Liu, Structure evolution, dielectric, and conductivity behavior of (K0.5Na0.5)NbO3-Bi(Zn2/3Nb1/3)O3 ceramics. J. Adv. Ceram. 10, 809–819 (2021)

    Article  CAS  Google Scholar 

  12. S. Zhou, D. Lin, Y. Su, L. Zhang, W. Liu, Enhanced dielectric, ferroelectric, and optical properties in rare earth elements doped PMN-PT thin films. J. Adv. Ceram. 10, 98–107 (2020)

    Article  Google Scholar 

  13. D.A. Permin, M.S. Boldin, A.V. Belyaev, S.S. Balabanov, V.A. Koshkin, A.A. Murashov, I.V. Ladenkov, E.A. Lantsev, K.E. Smetanina, N.M. Khamaletdinova, IR-transparent MgO-Gd2O3 composite ceramics produced by self-propagating high-temperature synthesis and spark plasma sintering. J. Adv. Ceram. 10, 237–246 (2021)

    Article  CAS  Google Scholar 

  14. C.-W. Nahm, Influence of La2O3 additives on microstructure and electrical properties of ZnO-Pr6O11-CoO-Cr2O3-La2O3-based varistors. Mater. Lett. 59, 2097–2100 (2005)

    Article  CAS  Google Scholar 

  15. M. Houabes, R. Metz, Rare earth oxides effects on both the threshold voltage and energy absorption capability of ZnO varistors. Ceram. Int. 33, 1191–1197 (2007)

    Article  CAS  Google Scholar 

  16. D. Xu, X.N. Cheng, M.S. Wang, L.Y. Shi, Microstructure and Electrical Properties of La2O3-Doped ZnO-Bi2O3 Based Varistor Ceramics. Adv. Mater. Res. 79–82, 2007–2010 (2009)

    Article  Google Scholar 

  17. M. Cologna, B. Rashkova, R. Raj, Flash Sintering of Nanograin Zirconia in <5s at 850°C. J. Am. Ceram. Soc. 93, 3556–3559 (2010)

    Article  CAS  Google Scholar 

  18. W. Qin, J. Yun, A.M. Thron, Kv. Benthem, Temperature Gradient and Microstructure Evolution in AC Flash Sintering of 3mol% Yttria-Stabilized Zirconia. Mater. Manuf. Processes. 32, 549–556 (2017)

    Article  CAS  Google Scholar 

  19. J. Zhang, Z. Wang, T. Jiang, L. Xie, C. Sui, R. Ren, J. Qiao, K. Sun, Densification of 8 mol% yttria-stabilized zirconia at low temperature by flash sintering technique for solid oxide fuel cells. Ceram. Int. 43, 14037–14043 (2017)

    Article  CAS  Google Scholar 

  20. L. Guan, J. Li, X. Song, J. Bao, T. Jiang, Graphite assisted flash sintering of Sm2O3 doped CeO2 ceramics at the onset temperature of 25 °C. Scripta Mater. 159, 72–75 (2019)

    Article  CAS  Google Scholar 

  21. S.K. Jha, H. Charalambous, H. Wang, X.L. Phuah, C. Mead, J. Okasinski, H. Wang, T. Tsakalakos, In-situ observation of oxygen mobility and abnormal lattice expansion in ceria during flash sintering. Ceram. Int. 44, 15362–15369 (2018)

    Article  CAS  Google Scholar 

  22. H. Charalambous, S.K. Jha, H. Wang, X.L. Phuah, H. Wang, T. Tsakalakos, Inhomogeneous reduction and its relation to grain growth of titania during flash sintering. Scripta Mater. 155, 37–40 (2018)

    Article  CAS  Google Scholar 

  23. S.K. Jha, K. Terauds, J.-M. Lebrun, R. Raj, Beyond flash sintering in 3 mol % yttria stabilized zirconia. J. Ceram. Soc. Jpn. 124, 283–288 (2016)

    Article  CAS  Google Scholar 

  24. R. Shi, Y. Pu, W. Wang, Y. Shi, J. Li, X. Guo, M. Yang, Flash sintering of barium titanate. Ceram. Int. 45, 7085–7089 (2019)

    Article  CAS  Google Scholar 

  25. B. Ma, Y. Zhu, K. Wang, Z. Sun, D. Liu, G. Shao, J. Liu, Y. Wang, Microstructure and dielectric property of flash sintered SiO2-coated BaTiO3 ceramics. Scr. Mater. 170, 1–5 (2019)

    Article  CAS  Google Scholar 

  26. H. Charalambous, S.K. Jha, R.T. Lay, A. Cabales, J. Okasinski, T. Tsakalakos, Investigation of temperature approximation methods during flash sintering of ZnO. Ceram. Int. 44, 6162–6169 (2018)

    Article  CAS  Google Scholar 

  27. Y. Zhang, J. Luo, Promoting the flash sintering of ZnO in reduced atmospheres to achieve nearly full densities at furnace temperatures of <120°C. Scr. Mater. 106, 26–29 (2015)

    Article  CAS  Google Scholar 

  28. F. Lemke, W. Rheinheimer, M.J. Hoffmann, A comparison of power controlled flash sintering and conventional sintering of strontium titanate. Scripta Mater. 130, 187–190 (2017)

    Article  CAS  Google Scholar 

  29. A. Karakuscu, M. Cologna, D. Yarotski, J. Won, J.S.C. Francis, R. Raj, B.P. Uberuaga, P. Davies, Defect structure of flash-sintered strontium titanate. J. Am. Ceram. Soc. 95, 2531–2536 (2012)

    Article  CAS  Google Scholar 

  30. D. Liu, Y. Gao, J. Liu, F. Liu, K. Li, H. Su, Y. Wang, L. An, Preparation of Al2O3-Y3Al5O12-ZrO2 eutectic ceramic by flash sintering. Scripta Mater. 114, 108–111 (2016)

    Article  CAS  Google Scholar 

  31. H. Zhang, Y. Wang, J. Liu, X. Xu, L. Chen, D. Liu, Reaction assisted flash sintering of Al2O3-YAG ceramic composites with eutectic composition. Ceram. Int. 45, 13551–13555 (2019)

    Article  CAS  Google Scholar 

  32. C. Schmerbauch, J. Gonzalez-Julian, R. Röder, C. Ronning, O. Guillon, L. Gauckler, Flash sintering of nanocrystalline zinc oxide and its influence on microstructure and defect formation. J. Am. Ceram. Soc. 97, 1728–1735 (2014)

    Article  CAS  Google Scholar 

  33. M. Shi, J. Liu, J. Li, J. Xu, M. Jiang, D. Xu, Effects of the electric field on microstructure and electrical properties of ZnO-Bi2O3-Co2O3 varistor by flash sintering. J. Mater. Sci. Mater. Electron. 33, 17900–17911 (2022)

    Article  CAS  Google Scholar 

  34. B. Cui, J. Niu, P. Peng, L. Shi, S. Du, J. Liu, D. Xu, Flash sintering preparation and electrical properties of ZnO-Bi2O3-M (M=Cr2O3, MnO2 or Co2O3) varistor ceramics. Ceram. Int. 46, 14913–14918 (2020)

    Article  CAS  Google Scholar 

  35. Y. Mei, S. Pandey, W. Long, J. Liu, S. Zhong, L. Zhang, S. Du, D. Xu, Processing and characterizations of flash sintered ZnO-Bi2O3-MnO2 varistor ceramics under different electric fields. J. Eur. Ceram. Soc. 40, 1330–1337 (2020)

    Article  CAS  Google Scholar 

  36. Y. Zhang, J.-I. Jung, J. Luo, Thermal runaway, flash sintering and asymmetrical microstructural development of ZnO and ZnO-Bi2O3 under direct currents. Acta Mater. 94, 87–100 (2015)

    Article  CAS  Google Scholar 

  37. J. Nie, Y. Zhang, J.M. Chan, S. Jiang, R. Huang, J. Luo, Two-step flash sintering of ZnO: Fast densification with suppressed grain growth. Scr. Mater. 141, 6–9 (2017)

    Article  CAS  Google Scholar 

  38. Y. Zhang, J. Nie, J. Luo, Flash sintering activated by bulk phase and grain boundary complexion transformations. Acta Mater. 181, 544–554 (2019)

    Article  CAS  Google Scholar 

  39. J. Liu, X. Li, X. Wang, R. Huang, Z. Jia, Alternating current field flash sintering 99% relative density ZnO ceramics at room temperature. Scripta Mater. 176, 28–31 (2020)

    Article  CAS  Google Scholar 

  40. X. Wang, Y. Zhu, R. Huang, H. Mei, Z. Jia, Flash sintering of ZnO ceramics at 50 °C under an AC field. Ceram. Int. 45, 24909–24913 (2019)

    Article  CAS  Google Scholar 

  41. J. Niu, H. She, Z. Liu, M. Cheng, J. Xu, J. Liu, G. Chen, B. Tang, D. Xu, A current-controlled flash sintering processing leading to dense and fine-grained typical multi-element ZnO varistor ceramics. J. Alloys Compd. 876, 160124 (2021)

    Article  CAS  Google Scholar 

  42. P. Peng, Y. Deng, J. Niu, L. Shi, Y. Mei, S. Du, J. Liu, D. Xu, Fabrication and electrical characteristics of flash-sintered SiO2-doped ZnO-Bi2O3-MnO2 varistors. J. Adv. Ceram. 9, 683–692 (2020)

    Article  CAS  Google Scholar 

  43. P. Peng, C. Chen, B. Cui, J. Li, D. Xu, B. Tang, Influence of the electric field on flash-sintered (Zr+Ta) co-doped TiO2 colossal permittivity ceramics. Ceram. Int. 48, 6016–6023 (2022)

    Article  CAS  Google Scholar 

  44. J.S.C. Francis, R. Raj, J. Halloran, Influence of the field and the current limit on flash sintering at isothermal furnace temperatures. J. Am. Ceram. Soc. 96, 2754–2758 (2013)

    Article  CAS  Google Scholar 

  45. R. Raj, Joule heating during flash-sintering. J. Eur. Ceram. Soc. 32, 2293–2301 (2012)

    Article  CAS  Google Scholar 

  46. X.L. Phuah, H. Wang, H. Charalambous, S.K. Jha, T. Tsakalakos, X. Zhang, H. Wang, Comparison of the grain growth behavior and defect structures of flash sintered ZnO with and without controlled current ramp. Scripta Mater. 162, 251–255 (2019)

    Article  CAS  Google Scholar 

  47. K.R. Rahman, F.U.Z. Chowdhury, M.N.I. Khan, Influence of Al3+ substitution on the electrical resistivity and dielectric behavior of Ni025Cu020Zn0.55AlxFe2-xO4 ferrites synthesized by solid state reaction technique. J. Magn. Magn. Mater. 443, 366–373 (2017)

    Article  CAS  Google Scholar 

Download references

Funding

National Natural Science Foundation of China, 52072004, Dong XU, the Key Research and Development Program of Anhui Province, 2022i01020008, Dong XU, State Key Laboratory of Advanced Materials and Electronic Components,FHR-JS-202011006,Dong XU

Author information

Authors and Affiliations

Authors

Contributions

MS contributed to conceptualization, methodology, experiment, writing. LZ contributed to draft visualization, experiment, analyzing, writing. ZC contributed to investigation, preparation, analyzing, writing. ZW contributed to supervision. QH contributed to data curation. JQ contributed to investigation. YJ contributed to investigation. BT contributed to conceptualization. DX contributed to guiding. All authors read the paper and commented on the text.

Corresponding author

Correspondence to Dong Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, M., Zhang, L., Cheng, Z. et al. Effect of La2O3 doping on microstructure and electrical properties of flash-sintered ZnO-Bi2O3 varistor. J Mater Sci: Mater Electron 33, 23437–23446 (2022). https://doi.org/10.1007/s10854-022-09105-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09105-9

Navigation