Skip to main content

Advertisement

Log in

Petal-like metal cobalt decorating carbon cloth as an effective host for flexible sulfur cathode

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Recently, lithium–sulfur batteries (LSBs) have attracted much attention due to their high theoretical capacity, low cost, and abundant sulfur resources in nature. However, the low conductivity of sulfur and the “shuttle effect” of lithium polysulfides (LPSs) severely limited its commercial application. In this work, metal cobalt-decorated carbon cloth composites (Co/CC) were prepared by a simple hydrothermal method, and used as S host in LSBs. SEM and TEM images exhibited that countless petal-like metal cobalt nanoparticles were uniformly supported on carbon cloth fibers. The high electrical conductivity and special fiber structure of the carbon cloth are beneficial to the transmission of electrons and Li+ during electrochemical process. Meanwhile, the metal cobalt can adsorb the LPSs and accelerate its conversion. Therefore, compared with CC–S electrode, the Co/CC–S electrode presented better electrochemical performance, at a higher sulfur loading of 2.5 mg cm−2, and it delivered a reversible capacity of 249.0 mA h g−1 after 500 cycles at 1C with a low-capacity decay of 0.018% per cycle. Even at a high sulfur loading of 4.3 mg cm−2, the Co/CC–S electrode can present a reversible capacity of 273.3 mA h g−1 after 180 cycles. This work provided a new idea for the application of CC in flexible and wearable LSBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

On behalf of all authors, I commit the research data policy and data availability of this manuscript.

References

  1. T. Yang, J. Xia, Z.H. Piao, L. Yang, S.C. Zhang, Y.L. Xing, G.M. Zhou, Graphene-based materials for flexible lithium-sulfur batteries. ACS Nano 15, 13901–13923 (2021)

    Article  CAS  Google Scholar 

  2. F. Li, M.R. Kaiser, J.M. Ma, Z.P. Guo, H.K. Liu, J.Z. Wang, Free-standing sulfur-polypyrrole cathode in conjunction with polypyrrole-coated separator for flexible Li-S batteries. Energy Storage Mater. 13, 312–322 (2018)

    Article  Google Scholar 

  3. M.Y. Wang, Y. Huang, K. Wang, Y.D. Zhu, N. Zhang, H.M. Zhang, S.P. Li, Z.H. Feng, PVD synthesis of binder-free silicon and carbon coated 3D α-Fe2O3 nanorods hybrid films as high-capacity and long-life anode for flexible lithium-ion batteries. Energy 164, 1021–1029 (2018)

    Article  CAS  Google Scholar 

  4. L. Han, H.L. Huang, X.B. Fu, J.F. Li, Z.L. Yang, X.J. Liu, L.K. Pan, M. Xu, A flexible, high-voltage and safe zwitterionic natural polymer hydrogel electrolyte for high-energy-density zinc-ion hybrid supercapacitor. Chem. Eng. J. 392, 123733 (2020)

    Article  CAS  Google Scholar 

  5. S. Kalybekkyzy, A. Mentbayeva, M.V. Kahraman, Y.G. Zhang, Z. Bakenov, Flexible S/DPAN/KB nanofiber composite as binder-free cathodes for Li-S batteries. J. Electrochem. Soc. 166, A5396–A5402 (2019)

    Article  CAS  Google Scholar 

  6. J.R. He, Y.F. Chen, W.Q. Lv, K.C. Wen, P.J. Li, F. Qi, Z.G. Wang, W.L. Zhang, Y.R. Li, W. Qin, W.D. He, Highly-flexible 3D Li2S/graphene cathode for high-performance lithium sulfur batteries. J. Power Sources 327, 474–480 (2016)

    Article  CAS  Google Scholar 

  7. C. Xie, H. Shan, X.X. Song, L.P. Chen, J.J. Wang, J.-W. Shi, J.H. Hu, J.J. Zhang, X.F. Li, Flexible S@C-CNTs cathodes with robust mechanical strength via blade-coating for lithium-sulfur batteries. J. Colloid Interface Sci. 592, 448–454 (2021)

    Article  CAS  Google Scholar 

  8. J.C. Jiang, Q.N. Fan, H.K. Liu, S.L. Chou, K. Konstantinov, J.Z. Wang, Understanding the effects of the low-concentration electrolyte on the performance of high-energy-density Li-S batteries. ACS Appl. Mater. Interfaces 13, 28405–28414 (2021)

    Article  CAS  Google Scholar 

  9. J.R. He, Y.F. Chen, W.Q. Lv, K.C. Wen, Z.G. Wang, W.L. Zhang, Y.R. Li, W. Qin, W.D. He, Three-dimensional hierarchical reduced graphene oxide/tellurium nanowires: a high-performance freestanding cathode for Li-Te batteries. ACS Nano 10, 8837–8842 (2016)

    Article  CAS  Google Scholar 

  10. Y. Gao, Q.Y. Guo, Q. Zhang, Y. Cui, Z.J. Zheng, Fibrous materials for flexible Li-S battery. Adv. Energy Mater. 11, 2002580 (2020)

    Article  Google Scholar 

  11. H.H. Li, H.Q. Chen, Y. Xue, Y.T. Zhang, M.J. Zhang, W.Q. Yu, G.Y. Bai, K.L. Zhuo, Y.P. Zheng, Catalytic and dual-conductive matrix regulating the kinetic behaviors of polysulfides in flexible Li-S batteries. Adv. Energy Mater. 10(35), 2001683 (2020)

    Article  CAS  Google Scholar 

  12. Z.S. Wang, J.D. Shen, J. Liu, X.J. Xu, Z.B. Liu, R.Z. Hu, L.C. Yang, Y.Z. Feng, J. Liu, Z.C. Shi, L.Z. Ouyang, Y. Yu, M. Zhu, Self-supported and flexible sulfur cathode enabled via synergistic confinement for high-energy-density lithium-sulfur batteries. Adv. Mater. 31(33), 1902228 (2019)

    Article  Google Scholar 

  13. J. Jin, W.L. Cai, J.S. Cai, Y.L. Shao, Y.Z. Song, Z. Xia, Q. Zhang, J.Y. Sun, MOF-derived hierarchical CoP nanoflakes anchored on vertically erected graphene scaffolds as self-supported and flexible hosts for lithium-sulfur batteries. J. Mater. Chem. A 8(6), 3027–3034 (2020)

    Article  CAS  Google Scholar 

  14. Y.F. Chao, K.Z. Wang, R. Jalili, A. Morlando, C.Y. Qin, A. Vijayakumar, C.Y. Wang, G.G. Wallace, Scalable solution processing MoS2 powders with liquid crystalline graphene oxide for flexible freestanding films with high areal lithium storage capacity. ACS Appl. Mater. Interfaces 11(50), 46746–46755 (2019)

    Article  CAS  Google Scholar 

  15. F. Yin, Q. Jin, H. Gao, X.T. Zhang, Z.G. Zhang, A strategy to achieve high loading and high energy density Li-S batteries. J. Energy Chem. 53, 340–346 (2021)

    Article  Google Scholar 

  16. X.Y. Shan, Z.X. Guo, Y.N. Zou, L.J. Zhao, Reduced graphene oxide-coated zinc-cobalt oxide nanosheet arrays with n-doped carbon anchored on carbon cloths as cathode materials for high-sulfur-loading Li–S batteries. ACS Appl. Nano Mater. 4(11), 11526–11536 (2021)

    Article  CAS  Google Scholar 

  17. B.S. Guo, S. Bandaru, C.L. Dai, H. Chen, Y.Q. Zhang, Q.J. Xu, S.J. Bao, M.Y. Chen, M.W. Xu, Self-supported FeCo2S4 nanotube arrays as binder-free cathodes for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 10(50), 43707–43715 (2018)

    Article  CAS  Google Scholar 

  18. Y.Q. Mao, W. Sun, X.Y. Yue, W.S. Hou, T.T. Deng, L.L. He, L. Fang, R. Sun, Z.H. Wang, K.N. Sun, Flexible free-standing cathode enabled via multifunctional Mo2C for high sulfur loading lithium-sulfur batteries. J. Power Sources 506, 230254 (2021)

    Article  CAS  Google Scholar 

  19. T. Feng, T. Zhao, S.F. Zhu, N.X. Zhang, Z.Z. Wei, K. Wang, L. Li, F. Wu, R.J. Chen, Anion-doped cobalt selenide with porous architecture for high-rate and flexible lithium-sulfur batteries. Small Methods 5(9), 2100649 (2021)

    Article  CAS  Google Scholar 

  20. T.J. Xiao, F.J. Yi, M.Z. Yang, W.L. Liu, M. Li, M.M. Ren, X. Zhang, Z. Zhou, A composite of CoNiP quantum dot-decorated reduced graphene oxide as a sulfur host for Li-S batteries. J. Mater. Chem. A 9(31), 16692–16698 (2021)

    Article  CAS  Google Scholar 

  21. T.J. Xiao, L.X. Zhao, H.H. Ge, M.Z. Yang, W.L. Liu, G.D. Li, M.M. Ren, X. Zhang, Z. Zhou, Cobalt oxyhydroxide decorating hollow carbon sphere: a high-efficiency multi-functional material for Li-S batteries and alkaline electrocatalysis. Chem. Eng. J. 439, 135790 (2022)

    Article  CAS  Google Scholar 

  22. Y.P. Liu, S.Y. Ma, L.F. Liu, J. Koch, M. Rosebrock, T.R. Li, F. Bettels, T. He, H. Pfnür, N.C. Bigall, A. Feldhoff, F. Ding, L. Zhang, Nitrogen doping improves the immobilization and catalytic effects of Co9S8 in Li-S batteries. Adv. Funct. Mater. 30(32), 2002462 (2020)

    Article  CAS  Google Scholar 

  23. M. Yousaf, Y.J. Chen, H. Tabassum, Z.P. Wang, Y.S. Wang, A.Y. Abid, A. Mahmood, N. Mahmood, S.J. Guo, R.P.S. Han, P. Gao, A dual protection system for heterostructured 3D CNT/CoSe2/C as high areal capacity anode for sodium storage. Adv. Sci. 7(05), 1902907 (2020)

    Article  CAS  Google Scholar 

  24. H. Su, L.Q. Lu, M.Z. Yang, F.P. Cai, W.L. Liu, M. Li, X. Hu, M.M. Ren, X. Zhang, Z. Zhou, Decorating CoSe2 on N-doped carbon nanotubes as catalysts and efficient polysulfides traps for Li-S batteries. Chem. Eng. J. 429, 132167 (2022)

    Article  CAS  Google Scholar 

  25. J. Liu, Y. Li, L.C. Zheng, R.R. Tang, W.H. Zhou, J. Gao, H.W. Wu, Porous Fe-Co-P nanowire arrays through alkaline etching as self-supported electrodes for efficient hydrogen production. J. Solid State Electrochem. 25(05), 1623–1631 (2021)

    Article  CAS  Google Scholar 

  26. Z.-D. Yang, X.-Y. Yang, T. Liu, Z.-W. Chang, Y.-B. Yin, X.-B. Zhang, J.-M. Yan, Q. Jiang, In situ CVD derived Co-N-C composite as highly efficient cathode for flexible Li-O2 batteries. Small 14(43), 1800590 (2018)

    Article  Google Scholar 

  27. C.Q. Zhang, J.J. Biendicho, T. Zhang, R.F. Du, J.S. Li, X.H. Yang, J. Arbiol, Y.T. Zhou, J.R. Morante, A. Cabot, Combined high catalytic activity and efficient polar tubular nanostructure in urchin-like metallic NiCo2Se4 for high-performance lithium-sulfur batteries. Adv. Funct. Mater. 29(34), 1903842 (2019)

    Article  Google Scholar 

  28. Y.B. Yang, S.X. Wang, L.T. Zhang, Y.F. Deng, H. Xu, X.S. Qin, G.H. Chen, CoS-interposed and Ketjen black-embedded carbon nanofiber framework as a separator modulation for high performance Li-S batteries. Chem. Eng. J. 369, 77–86 (2019)

    Article  CAS  Google Scholar 

  29. S.S. Yao, C.J. Zhang, R.D. Guo, A. Majeed, Y.P. He, Y.Q. Wang, X.Q. Shen, T.B. Li, S.B. Qin, CoS2-decorated cobalt/nitrogen Co-doped carbon nanofiber networks as dual functional electrocatalysts for enhancing electrochemical redox kinetics in lithium-sulfur batteries. ACS Sustain. Chem. Eng. 8(36), 13600–13609 (2020)

    Article  CAS  Google Scholar 

  30. J.C. Guo, Y.H. Xu, C.S. Wang, Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries. Nano Lett. 11(10), 4288–4294 (2011)

    Article  CAS  Google Scholar 

  31. S.F. Jiang, S. Huang, M.J. Yao, J.C. Zhu, L.L. Liu, Z.Q. Niu, Bimetal-organic frameworks derived Co/N-doped carbons for lithium-sulfur batteries. Chin. Chem. Lett. 31(09), 2347–2352 (2020)

    Article  CAS  Google Scholar 

  32. L.X. Yuan, X.P. Qiu, L.Q. Chen, W.T. Zhu, New insight into the discharge process of sulfur cathode by electrochemical impedance spectroscopy. J. Power Sources 189(1), 127–132 (2009)

    Article  CAS  Google Scholar 

  33. D.H. Duan, W.W. Zhao, K.X. Chen, Y.F. Wang, S.B. Liu, X.X. Zhou, L. Chen, Y. Li, MOF-71 derived layered Co-CoP/C for advanced Li-S batteries. J. Alloys Compd. 886, 161203 (2021)

    Article  CAS  Google Scholar 

  34. Z.F. Deng, Z.A. Zhang, Y.Q. Lai, J. Liu, J. Li, Y.X. Liu, Electrochemical impedance spectroscopy study of a lithium/sulfur battery: modeling and analysis of capacity fading. J. Electrochem. Soc. 160(4), A553–A558 (2013)

    Article  CAS  Google Scholar 

  35. Z.F. Li, Y. Lu, P.P. Chen, Q.H. Zeng, X. Wen, W. Wen, Y. Liu, A.Q. Chen, Z.X. Li, Z.X. Wang, L.Y. Zhang, Suppressing shuttle effect by large oxygen-containing crosslinked hyperbranched polyurethane as cathode encapsulated layer for high-performance lithium-sulfur batteries. Electrochim. Acta 394, 139130 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Natural Science Foundation of Shandong Province (Grant Nos. ZR2018MEM012 and ZR2021QE175), Qilu University of Technology International Cooperation Fund (QLUTGJHZ2018025), and Qilu University of Technology (Shandong Academy of Sciences) Youth Doctoral Cooperation Fund Project (2019BSHZ0021).

Funding

Funding was provided by the Natural Science Foundation of Shandong Province (Grant Nos. ZR2018MEM012, ZR2021QE175), Qilu University of Technology International Cooperation Fund (Grant No.: QLUTGJHZ2018025), and Qilu University of Technology (Shandong Academy of Sciences) Youth Doctoral Cooperation Fund Project (2019BSHZ0021).

Author information

Authors and Affiliations

Authors

Contributions

HG did experimental work and wrote the paper. HS did experimental work. MY did SEM and TEM tests. WL did XRD and Raman tests. MR performed writing and revising of the manuscript. YW provided the technical support.

Corresponding authors

Correspondence to Manman Ren or Yuanhao Wang.

Ethics declarations

Conflict of interest

I on behalf all the authors state that that this publication is approved by all authors and there is no conflict of interest between the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1240 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, H., Su, H., Yang, M. et al. Petal-like metal cobalt decorating carbon cloth as an effective host for flexible sulfur cathode. J Mater Sci: Mater Electron 33, 23250–23257 (2022). https://doi.org/10.1007/s10854-022-09089-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09089-6

Navigation