Skip to main content
Log in

Construction of core–shell-structured Al2O3@ppy composites with high-performance electromagnetic wave absorption performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, flower sphere alumina was synthesized autonomously by hydrothermal and annealing processes. The in situ polymerization of polypyrrole on the surface of alumina at low temperatures based on the principle of component synergy has enabled the construction of a core–shell structure for Al2O3@ppy materials, resulting in excellent electromagnetic wave absorption properties. The effect of the addition of alumina and the morphology of the materials on the microwave absorption properties of Al2O3@ppy composites was also discussed. Various methods are used for the characterization of the material. The Al2O3@ppy composites were effective in matching thicknesses of 2.5 mm with a minimum reflection loss (RL) of − 65.8 dB at a frequency of 11.52 GHz and a maximum effective absorption bandwidth (EAB) of 5.6 GHz at a matched thickness of 2.0 mm. The results show that Al2O3@ppy composites can provide a reference for EMW absorber material research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Z. Lou, Q. Wang, U.I. Kara, R.S. Mamtani, X. Zhou, H. Bian, Z. Yang, Y. Li, H. Lv, S. Adera, X. Wang, Biomass-derived carbon heterostructures enable environmentally adaptive wideband electromagnetic wave absorbers. Nano-Micro Lett. 14, 11 (2021). https://doi.org/10.1007/s40820-021-00750-z

    Article  CAS  Google Scholar 

  2. J. Li, D. Zhou, P. Wang, C. Du, W. Liu, J. Su, L. Pang, M. Cao, L. Kong, Recent progress in two-dimensional materials for microwave absorption applications. Chem. Eng. J. 425, 131558 (2021). https://doi.org/10.1016/j.cej.2021.131558

    Article  CAS  Google Scholar 

  3. X. Li, W. You, R. Zhang, J. Fang, Q. Zeng, X. Li, C. Xu, M. Wang, R. Che, Synthesis of nonspherical hollow architecture with magnetic Fe core and Ni decorated tadpole-like shell as ultrabroad bandwidth microwave absorbers. Small 17, 2103351 (2021). https://doi.org/10.1002/smll.202103351

    Article  CAS  Google Scholar 

  4. X. Wang, M. Zhang, J. Shu, B. Wen, W. Cao, M. Cao, Thermally-tailoring dielectric “genes” in graphene-based heterostructure to manipulate electromagnetic response. Carbon 184, 136–145 (2021). https://doi.org/10.1016/j.carbon.2021.07.099

    Article  CAS  Google Scholar 

  5. J. Liu, Y. Duan, T. Zhang, L. Huang, H. Pang, Dual-polarized and real-time reconfigurable metasurface absorber with infrared-coded remote-control system. Nano Res. 15, 7498–7505 (2022). https://doi.org/10.1007/s12274-022-4528-7

    Article  CAS  Google Scholar 

  6. Y. Zhou, W. Zhou, C. Ni, S. Yan, L. Yu, X. Li, “Tree blossom” Ni/NC/C composites as high-efficiency microwave absorbents. Chem. Eng. J. 430, 132621 (2022). https://doi.org/10.1016/j.cej.2021.132621

    Article  CAS  Google Scholar 

  7. H. Xing, J. Xie, M. Hu, Sheet-like NiCo2O4-interconnected multiwalled carbon nanotubes with high-performance electromagnetic wave absorption. J. Mater. Sci. 33, 306–320 (2021). https://doi.org/10.1007/s10854-021-07294-3

    Article  CAS  Google Scholar 

  8. N. Liang, Y. Sun, X. Qin, Z. Yin, G. Tian, D. Zhang, B. Hu, H. Yue, S. Feng, In situ growth of 1D carbon nanotubes on well-designed 2D Ni/N co-decorated carbon sheets toward excellent electromagnetic wave absorbers. Appl. Surf. Sci. 569, 150991 (2021). https://doi.org/10.1016/j.apsusc.2021.150991

    Article  CAS  Google Scholar 

  9. J. Di, Y. Duan, H. Pang, X. Ma, J. Liu, Sintering-regulated two-dimensional plate@shell basalt@NiO heterostructure for enhanced microwave absorption. Appl. Surf. Sci. 574, 151590 (2022). https://doi.org/10.1016/j.apsusc.2021.151590

    Article  CAS  Google Scholar 

  10. X. Zhang, J. Qiao, Y. Jiang, F. Wang, X. Tian, Z. Wang, L. Wu, W. Liu, J. Liu, Carbon-based MOF derivatives: emerging efficient electromagnetic wave absorption agents. Nano-Micro Lett. 13, 135 (2021). https://doi.org/10.1007/s40820-021-00658-8

    Article  CAS  Google Scholar 

  11. D. Xu, Y. Yang, L. Lyu, A. Ouyang, W. Liu, Z. Wang, L. Wu, F. Yang, J. Liu, F. Wang, One-dimensional MnO@N-doped carbon nanotubes as robust dielectric loss electromagnetic wave absorbers. Chem. Eng. J. 410, 128295 (2021). https://doi.org/10.1016/j.cej.2020.128295

    Article  CAS  Google Scholar 

  12. Z. Liao, M. Ma, Z. Tong, R. Wang, Y. Bi, Y. Chen, K.L. Chung, Y. Ma, Fabrication of ZnFe2O4/C@PPy composites with efficient electromagnetic wave absorption properties. J Colloid Interface Sci. 602, 602–611 (2021). https://doi.org/10.1016/j.jcis.2021.06.042

    Article  CAS  Google Scholar 

  13. Y. Ge, C. Li, G.I.N. Waterhouse, Z. Zhang, ZnFe2O4@PDA@polypyrrole composites with efficient electromagnetic wave absorption properties in the 18–40 GHz region. J. Mater. Sci. 56, 10876–10891 (2021). https://doi.org/10.1007/s10853-021-05968-1

    Article  CAS  Google Scholar 

  14. Y. He, H. Xie, S. Li, D. Liao, Y. Wang, Y. Chen, L. Zhou, C. Yu, H. Liu, Broadband microwave-absorbing and energy-storing composite foam with pomegranate-like microstructure created from Pickering emulsion method. Compos Part A 149, 106551 (2021). https://doi.org/10.1016/j.compositesa.2021.106551

    Article  CAS  Google Scholar 

  15. X. Liu, H. Luo, Y. Li, F. Chen, J. Liu, W. Yang, X. Wang, R. Gong, High-temperature dielectric and microwave absorption performances of TiB2/Al2O3 ceramics prepared by spark plasma sintering. Sci. China Technol. Sci. 64, 1264–1275 (2021). https://doi.org/10.1007/s11431-020-1795-x

    Article  CAS  Google Scholar 

  16. R. Kuchi, V. Dongquoc, P. Cao Van, D. Kim, J. Jeong, Synthesis of porous Fe3O4–SnO2 core–void–shell nanocomposites as high-performance microwave absorbers. J. Environ. Chem. Eng. 9, 106585 (2021). https://doi.org/10.1016/j.jece.2021.106585

    Article  CAS  Google Scholar 

  17. J. Wang, Z. Jia, X. Liu, J. Dou, B. Xu, B. Wang, G. Wu, Construction of 1D heterostructure NiCo@C/ZnO nanorod with enhanced microwave absorption. Nano-Micro Lett. 13, 175 (2021). https://doi.org/10.1007/s40820-021-00704-5

    Article  CAS  Google Scholar 

  18. Y. Duan, H. Pang, H. Zhang, Structure and composition design on ternary CNT@ZnFe2O4@ZnO composite utilized as enhanced microwave absorbing materials. Diam Relat Mater. 120, 108701 (2021). https://doi.org/10.1016/j.diamond.2021.108701

    Article  CAS  Google Scholar 

  19. D. Ding, B. Bai, G. Xiao, X. Chen, K. Li, X. Chong, J. Luo, Combustion synthesis and dielectric properties of B4C/Al2O3/CNTs composite powders. J. Mater. Sci. 32, 25735–25747 (2020). https://doi.org/10.1007/s10854-020-04471-8

    Article  CAS  Google Scholar 

  20. Y. Bi, M. Ma, Z. Liao, Z. Tong, Y. Chen, R. Wang, Y. Ma, G. Wu, One-dimensional Ni@Co/C@PPy composites for superior electromagnetic wave absorption. J. Colloid Interface Sci. 605, 483–492 (2022). https://doi.org/10.1016/j.jcis.2021.07.050

    Article  CAS  Google Scholar 

  21. Y. Zhan, R. Zhao, X. Xiang, S. He, S. Zhao, W. Xue, Hierarchical core/shell bamboo-like polypyrrole nanofibers/Fe3O4 hybrids with superior microwave absorption performance. Compos. Interface. 26, 1087–1100 (2019). https://doi.org/10.1080/09276440.2019.1586043

    Article  CAS  Google Scholar 

  22. Z. Zhang, G. Wang, W. Gu, Y. Zhao, S. Tang, G. Ji, A breathable and flexible fiber cloth based on cellulose/polyaniline cellular membrane for microwave shielding and absorbing applications. J. Colloid Interface Sci. 605, 193–203 (2022). https://doi.org/10.1016/j.jcis.2021.07.085

    Article  CAS  Google Scholar 

  23. Q. Wang, X. Wu, J. Huang, S. Chen, Y. Zhang, C. Dong, G. Chen, L. Wang, H. Guan, Enhanced microwave absorption of biomass carbon/nickel/polypyrrole (C/Ni/PPy) ternary composites through the synergistic effects. J. Alloy Compd. 890, 161887 (2022). https://doi.org/10.1016/j.jallcom.2021.161887

    Article  CAS  Google Scholar 

  24. C. Xu, F. Wu, A. Xie, L. Duan, Z. Yang, Y. Xia, M. Sun, Z. Xiong, Hollow polypyrrole nanofiber-based self-assembled aerogel: large-scale fabrication and outstanding performance in electromagnetic pollution management. Ind. Eng. Chem. Res. 59, 7604–7610 (2020). https://doi.org/10.1021/acs.iecr.0c00386

    Article  CAS  Google Scholar 

  25. Y. Lai, L. Lv, H. Fu, Preparation and study of Al2O3@PPy@rGO composites with microwave absorption properties. J. Alloy Compd. 832, 152957 (2020). https://doi.org/10.1016/j.jallcom.2019.152957

    Article  CAS  Google Scholar 

  26. K. Yang, Y. Cui, Z. Liu, P. Liu, Q. Zhang, B. Zhang, Design of core–shell structure NC@MoS2 hierarchical nanotubes as high-performance electromagnetic wave absorber. Chem. Eng. J. 426, 131308 (2021). https://doi.org/10.1016/j.cej.2021.131308

    Article  CAS  Google Scholar 

  27. M. Qiao, D. Wei, X. He, X. Lei, J. Wei, Q. Zhang, Novel yolk–shell Fe3O4@void@SiO2@PPy nanochains toward microwave absorption application. J. Mater. Sci. 56, 1312–1327 (2020). https://doi.org/10.1007/s10853-020-05313-y

    Article  CAS  Google Scholar 

  28. X. Shu, B. Fang, W. Wu, Y. Song, Z. Zhao, Acicular or octahedral Fe3O4/rice husk-based activated carbon composites through graphitization synthesis as superior electromagnetic wave absorbers. Compos. A 151, 106635 (2021). https://doi.org/10.1016/j.compositesa.2021.106635

    Article  CAS  Google Scholar 

  29. S. Dong, X. Zhang, W. Zhang, J. Han, P. Hu, A multiscale hierarchical architecture of a SiC whiskers–graphite nanosheets/polypyrrole ternary composite for enhanced electromagnetic wave absorption. J. Mater. Chem. C 6, 10804–10814 (2018). https://doi.org/10.1039/C8TC03683G

    Article  CAS  Google Scholar 

  30. J. Li, H. Ji, Y. Xu, J. Zhang, Y. Yan, Three-dimensional graphene supported Fe3O4 coated by polypyrrole toward enhanced stability and microwave absorbing properties. J. Mater. Res. Technol. 9, 762–772 (2020). https://doi.org/10.1016/j.jmrt.2019.11.016

    Article  CAS  Google Scholar 

  31. L. Ding, X. Zhao, Y. Huang, J. Yan, T. Li, P. Liu, Ultra-broadband and covalently linked core–shell CoFe2O4@PPy nanoparticles with reduced graphene oxide for microwave absorption. J. Colloid Interfaces Sci. 595, 168–177 (2021). https://doi.org/10.1016/j.jcis.2021.03.019

    Article  CAS  Google Scholar 

  32. Y. Bi, M. Ma, Y. Liu, Z. Tong, R. Wang, K.L. Chung, A. Ma, G. Wu, Y. Ma, C. He, P. Liu, L. Hu, Microwave absorption enhancement of 2-dimensional CoZn/C@MoS2@PPy composites derived from metal-organic framework. J. Colloid Interfaces Sci. 600, 209–218 (2021). https://doi.org/10.1016/j.jcis.2021.04.137

    Article  CAS  Google Scholar 

  33. M. Yousaf, Y. Lu, E. Hu, B. Wang, M. Niaz Akhtar, A. Noor, M. Akbar, M.A.K. Yousaf Shah, F. Wang, B. Zhu, Tunable magneto-optical and interfacial defects of Nd and Cr-doped bismuth ferrite nanoparticles for microwave absorber applications. J. Colloid Interface Sci. 608, 1868–1881 (2022). https://doi.org/10.1016/j.jcis.2021.09.182

    Article  CAS  Google Scholar 

  34. L. Bai, H. Xing, X. Ji, P. Yang, D-xylose-derived carbon microspheres modified by CuFe2O4 nanoparticles with excellent microwave absorption properties. J. Mater. Sci. 32, 26726–26739 (2021). https://doi.org/10.1007/s10854-021-07050-7

    Article  CAS  Google Scholar 

  35. J. Xu, Z. Liu, J. Wang, P. Liu, M. Ahmad, Q. Zhang, B. Zhang, Preparation of core-shell C@TiO2 composite microspheres with wrinkled morphology and its microwave absorption. J. Colloid Interface Sci. 607, 1036–1049 (2022). https://doi.org/10.1016/j.jcis.2021.09.038

    Article  CAS  Google Scholar 

  36. L. Wang, M. Huang, X. Qian, L. Liu, W. You, J. Zhang, M. Wang, R. Che, Confined magnetic-dielectric balance boosted electromagnetic wave absorption. Small 17, 2100970 (2021). https://doi.org/10.1002/smll.202100970

    Article  CAS  Google Scholar 

  37. Y. Sun, B. Zhou, H. Wang, X. Deng, J. Feng, M. He, X. Li, X. Zhu, Y. Peng, X. Zheng, Boosting dual-interfacial polarization by decorating hydrophobic graphene with high-crystalline core-shell FeCo@Fe3O4 nanoparticle for improved microwave absorption. Carbon 186, 333–343 (2022). https://doi.org/10.1016/j.carbon.2021.10.053

    Article  CAS  Google Scholar 

  38. V. Shukla, Role of spin disorder in magnetic and EMI shielding properties of Fe3O4/C/PPy core/shell composites. J. Mater. Sci. 55, 2826–2835 (2019). https://doi.org/10.1007/s10853-019-04198-w

    Article  CAS  Google Scholar 

  39. L. Liang, W. Gu, Y. Wu, B. Zhang, G. Wang, Y. Yang, G. Ji, Heterointerface engineering in electromagnetic absorbers: new insights and opportunities. Adv. Mater. 34, e2106195 (2022). https://doi.org/10.1002/adma.202106195

    Article  CAS  Google Scholar 

  40. F. Tao, M. Green, A.T.V. Tran, Y. Zhang, Y. Yin, X. Chen, Plasmonic Cu9S5 nanonets for microwave absorption. ACS Appl. Nano Mater. 2, 3836–3847 (2019). https://doi.org/10.1021/acsanm.9b00700

    Article  CAS  Google Scholar 

  41. Q. Chang, C. Li, J. Sui, G.I.N. Waterhouse, Z. Zhang, L. Yu, Cage-like eggshell membrane-derived Co-CoxSy-Ni/N, S-codoped carbon composites for electromagnetic wave absorption. Chem. Eng. J. 430, 132650 (2022). https://doi.org/10.1016/j.cej.2021.132650

    Article  CAS  Google Scholar 

  42. X. Yang, Y. Duan, S. Li, L. Huang, H. Pang, B. Ma, T. Wang, Constructing three-dimensional reticulated carbonyl iron/carbon foam composites to achieve temperature-stable broadband microwave absorption performance. Carbon 188, 376–384 (2022). https://doi.org/10.1016/j.carbon.2021.12.044

    Article  CAS  Google Scholar 

  43. H. Wu, H. Si, Z. Zhang, Z. Kang, P. Wu, L. Zhou, S. Zhang, Z. Zhang, Q. Liao, Y. Zhang, All-inorganic perovskite quantum dot-monolayer MoS2 mixed-dimensional van der waals heterostructure for ultrasensitive photodetector. Adv. Sci. 5, 1801219 (2018). https://doi.org/10.1002/advs.201801219

    Article  CAS  Google Scholar 

  44. Y. Guo, D. Wang, Y. Tian, J. Wang, T. Bai, H. Liu, Z. Guo, C. Liu, C. Shen, FeCo alloy nanoparticle decorated cellulose based carbon aerogel as a low-cost and efficient electromagnetic microwave absorber. J. Mater. Chem. C 10, 126–134 (2021). https://doi.org/10.1039/d1tc04494j

    Article  CAS  Google Scholar 

  45. M. Zhang, J. Zhang, H. Lin, T. Wang, S. Ding, Z. Li, J. Wang, A. Meng, Q. Li, Y. Lin, Designable synthesis of reduced graphene oxide modified using CoFe2O4 nanospheres with tunable enhanced microwave absorption performances between the whole X and Ku bands. Composites B 190, 107902 (2020). https://doi.org/10.1016/j.compositesb.2020.107902

    Article  CAS  Google Scholar 

  46. B. Wang, Y. Fu, J. Li, T. Liu, Yolk-shelled Co@SiO2@Mesoporous carbon microspheres: construction of multiple heterogeneous interfaces for wide-bandwidth microwave absorption. J. Colloid Interface Sci. 607, 1540–1550 (2022). https://doi.org/10.1016/j.jcis.2021.09.028

    Article  CAS  Google Scholar 

  47. X. Yang, Y. Duan, S. Li, H. Pang, L. Huang, Y. Fu, T. Wang, Bio-inspired microwave modulator for high-temperature electromagnetic protection, infrared stealth and operating temperature monitoring. Nano-Micro Lett. 14, 12–28 (2021). https://doi.org/10.1007/s40820-021-00776-3

    Article  CAS  Google Scholar 

  48. L. Kong, X. Yin, H. Xu, X. Yuan, T. Wang, Z. Xu, J. Huang, R. Yang, H. Fan, Powerful absorbing and lightweight electromagnetic shielding CNTs/RGO composite. Carbon 145, 61–66 (2019). https://doi.org/10.1016/j.carbon.2019.01.009

    Article  CAS  Google Scholar 

  49. X. Zeng, X. Cheng, R. Yu, G.D. Stucky, Electromagnetic microwave absorption theory and recent achievements in microwave absorbers. Carbon 168, 606–623 (2020). https://doi.org/10.1016/j.carbon.2020.07.028

    Article  CAS  Google Scholar 

  50. H. Mei, X. Zhao, S. Zhou, D. Han, S. Xiao, L. Cheng, 3D-printed oblique honeycomb Al2O3/SiCw structure for electromagnetic wave absorption. Chem. Eng. J. 372, 940–945 (2019). https://doi.org/10.1016/j.cej.2019.05.011

    Article  CAS  Google Scholar 

  51. L. Zhou, J. Huang, X. Wang, G. Su, J. Qiu, Y. Dong, Mechanical, dielectric and microwave absorption properties of FeSiAl/Al2O3 composites fabricated by hot-pressed sintering. J. Alloy Compd. 774, 813–819 (2019). https://doi.org/10.1016/j.jallcom.2018.09.387

    Article  CAS  Google Scholar 

  52. W. Tian, J. Li, Y. Liu, R. Ali, Y. Guo, L. Deng, N. Mahmood, X. Jian, Atomic-scale layer-by-layer deposition of FeSiAl@ZnO@Al2O3 hybrid with threshold anti-corrosion and ultra-high microwave absorption properties in low-frequency bands. Nano-Micro Lett. 13, 161 (2021). https://doi.org/10.1007/s40820-021-00678-4

    Article  CAS  Google Scholar 

  53. J. Guo, H. Song, H. Liu, C. Luo, Y. Ren, T. Ding, M.A. Khan, D.P. Young, X. Liu, X. Zhang, J. Kong, Z. Guo, Polypyrrole-interface-functionalized nano-magnetite epoxy nanocomposites as electromagnetic wave absorbers with enhanced flame retardancy. J. Mater. Chem. C 5, 5334–5344 (2017). https://doi.org/10.1039/C7TC01502J

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51477002 and 51707003) and the University Synergy Innovation Program of Anhui Province (Grant No. GXXT-2019-028).

Author information

Authors and Affiliations

Authors

Contributions

The contributions of all authors on this manuscript are as follows: HX:funding acquisition, project administration, resources, supervision, review, and editing; WC and CL: conceptualization, methodology, validation, writing, and editing; and XJ and PY: validation and writing.

Corresponding author

Correspondence to Honglong Xing.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, H., Chen, W., Liu, C. et al. Construction of core–shell-structured Al2O3@ppy composites with high-performance electromagnetic wave absorption performance. J Mater Sci: Mater Electron 33, 23196–23211 (2022). https://doi.org/10.1007/s10854-022-09084-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09084-x

Navigation