Skip to main content
Log in

Electrical and magnetic studies on promising Aurivillius intergrowth compound

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Aurivillius intergrowth multiferroic phases are inspiring to many researchers owing to their scientific and technological application point of view. We have synthesized the intergrowth of promising three-layered Bi3.25La0.75Ti3O12 (BLT) and four-layered Bi4NdTi3Fe0.7Co0.3O15 (BNTF) compounds. The X-ray diffraction (XRD) data was analyzed by comparing our data with a standard eight-layered compound (Bi9Ti6FeO27) and the lattice parameters were evaluated. Showing a shoulder peak at maximum XRD intensity peak (1 1 8) is considered to be a signature of intergrowth formation. Scanning electron microscopic images have shown non-uniform disk-like grains with no preferential orientation. In order to extract information about relaxation species, Nyquist plots (Cole–Cole plots) were drawn at different temperatures. AC activation energies were evaluated from \(\sigma\)ac vs. 1000/T plots, drawn at 10 kHz, 50 kHz and 100 kHz. Based on the impedance studies it is concluded that the hopping mechanism prefers through the doubly ionized oxygen atom vacancies and this phenomenon is corroborated to dielectric relaxation. Room temperature magnetic measurements display a weak ferromagnetic order. The intergrowth compound (BLT–BNTF) displayed ME coefficient (= 0.123 mV/cm–Oe) at lower magnetic fields. This is the most striking factor and helpful to fabricate room temperature Magnetoelectric sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data sets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. D. Song, J. Yang, Y. Wang, Focus on the ferroelectric Polarization behavior of four-layered Aurivillius multiferroic thin film. Ceram. Int. 45, 15695–15702 (2019). https://doi.org/10.1016/j.ceramint.2019.02.054

    Article  CAS  Google Scholar 

  2. D.L. Zhang, W.C. Huang, Z.W. Chen, W.B. Zhao, L. Feng, M. Li, Y.W. Yin, S.N. Dong, X.G. Li, structure evaluation and multiferroic properties in Cobalt doped Bi4NdTi3Fe1-xCoxO15- Bi3NdTi2Fe1-xCoxO12-δ Intergrowth Aurivillius Compounds. Sci. Rep. 7, 43540 (2017). https://doi.org/10.1038/srep43540

    Article  CAS  Google Scholar 

  3. P. Mandal, M.J. Pitcher, J. Alaria, H. Niu, P. Borisov, P. Stamenov, J.B. Claridge, M.J. Rosseinky, Designing switchable polarization and magnetization at room temperature in an oxide. Nature 525, 363–366 (2015). https://doi.org/10.1038/nature14881

    Article  CAS  Google Scholar 

  4. W. Eerenstein, N.D. Mathur, J.F. Scott, Multiferroics: a magnetic twist for ferroelectricity. Nature 442, 759–765 (2006). https://doi.org/10.1038/nmat1804

    Article  CAS  Google Scholar 

  5. F.J. Yang, P. Su, C. Wei, X.Q. Chen, C.P. Yang, W.Q. Cao, Large magnetic response in (Bi4Nd)Ti4(Fe0.5Co0.5)O15 ceramic at room-temperature. J. Appl. Phys. 110, 126102 (2011). https://doi.org/10.1063/1.3671418

    Article  CAS  Google Scholar 

  6. X. Zuo, E. He, Z. Hui, J. Bai, J. Yang, Z. Xuebin, J. Dai, Magnetic, dielectric and magneto-dielectric properties of Aurivillius phase Bi4.25Nd0.75FeTi2(NbCo)0.5O15 ceramics. J. Mater. Sci: Mater. Electron. 30, 16337–16346 (2019). https://doi.org/10.1007/s10854-019-02004-6

    Article  CAS  Google Scholar 

  7. H. Ju, Y. Lee, K.-T. Kim, I.H. Choi, C.J. Roh, S. Son, P. Park, J.H. Kim, T.S. Jung, J.H. Kim, K.H. Kim, J.-G. Park, J.S. Lee, Possible persistence of multiferroic order down to bilayer limit of van der Waals Material NiI2. Nano Lett. 21(12), 5126–5132 (2021). https://doi.org/10.1021/acs.nanolett.1c01095

    Article  CAS  Google Scholar 

  8. B. Sun, Y. Liu, P. Chen, Room-temperature multiferroic properties of single-crystalline FeWO4 nanowires. Scr. Mater. 89, 17–20 (2014). https://doi.org/10.1016/j.scriptamat.2014.06.030

    Article  CAS  Google Scholar 

  9. B. Sun, P. Han, W. Zhao, Y. Liu, P. Chen, White-light-controlled magnetic and ferroelectric properties in multiferroic BiFeO3 square nanosheets. J. Phys. Chem. C 118(32), 18814–18819 (2014). https://doi.org/10.1021/jp5064885

    Article  CAS  Google Scholar 

  10. P.H. Fang, C.R. Robbins, B. Aurivillius, Ferroelectricity in the compound Bi4Ti3O12. Phys. Rev. 126(3), 892–892 (1962). https://doi.org/10.1103/PhysRev.126.892

    Article  CAS  Google Scholar 

  11. B. Aurivillius, P.H. Fang, Ferroelectricity in the compound Ba2Bi4Ti5O18. Phys. Rev. 126(3), 893–896 (1962). https://doi.org/10.1103/PhysRev.126.893

    Article  Google Scholar 

  12. C. Pirovano, Modelling the crystal structures of Aurivillius phases. Solid State Ion. 140(1–2), 115–123 (2001). https://doi.org/10.1016/S0167-2738(01)00699-3

    Article  CAS  Google Scholar 

  13. A. Moure, Review and perspectives of Aurivillius stucturea as a lead-free piezoelectric systems. Appl. Sci. 8(1), 62 (2018). https://doi.org/10.3390/app8010062

    Article  CAS  Google Scholar 

  14. K.R. Kendall, C. Navas, J.K. Thomas, H.-C. zur Loye, Recent developments in oxide ion conductors: Aurivillius phases. Chem. Mater. 8, 642–649 (1996). https://doi.org/10.1021/cm9503083

    Article  CAS  Google Scholar 

  15. J.-B. Li, Y.-P. Huang, H.-B. Jin, G.-H. Rao, J.-K. Liang, Inhomogeneous structure and magnetic properties of Aurivillius ceramics Bi4Bin-3Ti3Fen+3O3n+3. J. Am. Ceram. Soc. 96, 3920–3925 (2013). https://doi.org/10.1111/jace.12614

    Article  CAS  Google Scholar 

  16. X. Mao, W. Wang, X. Chen, Y. Lu, Multiferroic properties of layer-structured Bi5Fe0.5Co0.5Ti3O15 ceramics. Appl. Phys. Lett. 95, 082901 (2009). https://doi.org/10.1063/1.3213344

    Article  CAS  Google Scholar 

  17. H. Uchida, R. Ueno, H. Funakubo, S. Koda, Crystal structure and ferroelectric properties of rare-earth substituted BiFeO3 thin films. J. Appl. Phys. 100(1), 014106 (2006). https://doi.org/10.1063/1.2210167

    Article  CAS  Google Scholar 

  18. E. Venkata Ramana, N.V. Prasad, D.M. Tobaldi, Z. Janez, M.K. Singh, J.H. Maria, M.P. Seabra, G. Prasad, M.V. Valente, Effect of samarium and vanadium co-doping on structure, ferroelectric and photocatalytic properties of bismuth titanate. RSC Adv. 7, 9680–9692 (2017). https://doi.org/10.1039/C7RA00021A

    Article  Google Scholar 

  19. B. Shobhan Babu, G. Prasad, G.S. Kumar, N.V. Prasad, Studies on samarium modified SrBi4Ti4O15 Aurivillius ferroelectric ceramics. Ferroelectrics 572(1), 106–117 (2021). https://doi.org/10.1080/00150193.2020.1868876

    Article  CAS  Google Scholar 

  20. Zulhadjri, T.P. Wendari, R. Ramadhani, Y.E. Putri, Imelda, La3+ substitution induced structural transformation in CaBi4Ti4O15 Aurivillius phases: synthesis, morphology, dielectric and optical properties. Ceram. Int. 47(16), 23549–23557 (2021). https://doi.org/10.1016/j.ceramint.2021.05.072

  21. H. Sun, Y. Wu, T. Yao, Y. Lu, H. Shen, F. Huang, X. Chen, Electrical and magnetic properties of Aurivillius phase Bi5Fe1-xNixTi3O15 thin films prepared by chemical solution deposition. J. Alloys Compd. 765, 27–36 (2018). https://doi.org/10.1016/j.jallcom.2018.06.167

    Article  CAS  Google Scholar 

  22. W. Fan, X. Jiang, C. Chen, X. Huang, X. Nie, X. Wang, Electrical properties and Curie temperature of Li/Ce co-doped BaBi4Ti4O15–Bi4Ti3O12 intergrowth ceramics. Ceram. Int. 48, 2833–2842 (2022). https://doi.org/10.1016/j.ceramint.2021.10.073

    Article  CAS  Google Scholar 

  23. Y. Liu, X. Zhou, Z. Jia, H. Wu, G. Wu, Oxygen vacancy-induced dielectric polarization prevails in the electromagnetic wave-absorbing mechanism for Mn-based MOFs-derived composites. Adv. Funct. Mater. (2022). https://doi.org/10.1002/adfm.202204499

    Article  Google Scholar 

  24. S. Zhang, Z. Jia, Bo. Cheng, Z. Zhao, Lu. Feng, Wu. Guanglei, Recent progress of perovskite oxides and their hybrids for electromagnetic wave absorption: a mini-review. Adv. Compos. Hybrid Mater. (2022). https://doi.org/10.1007/s42114-022-00458-7

    Article  Google Scholar 

  25. Y. Liu, Z. Jia, Q. Zhan, Y. Dong, Xu. Qimeng, Wu. Guanglei, Magnetic manganese-based composites with multiple loss mechanisms towards broadband absorption. Nano Res. 15, 5590–5600 (2022). https://doi.org/10.1007/s12274-022-4287-5

    Article  CAS  Google Scholar 

  26. Z. Jia, M. Kong, Yu. Bowen, Y. Ma, J. Pan, Wu. Guanglei, Tunable Co/ZnO/C@MWCNTs based on carbon nanotube-coated MOF with excellent microwave absorption properties. J. Mater. Sci. Technol. 127, 153–163 (2022). https://doi.org/10.1016/j.jmst.2022.04.005

    Article  Google Scholar 

  27. T. Kikuchi, A. Watanabe, K. Uchida, A family of mixed-layer type bismuth compounds. Mater. Res. Bull. 12(3), 299–304 (1977). https://doi.org/10.1016/0025-5408(77)90148-9

    Article  CAS  Google Scholar 

  28. T. Kobayashi, Y. Naguchi, M. Miyayama, Enhanced spontaneous polarization in super lattice stuctured Bi4Ti3O12-BaBi3Ti4O15 single crystals. Appl. Phys. Lett 86, 627 (2005). https://doi.org/10.1063/1.1847693

    Article  CAS  Google Scholar 

  29. W. Wang, S.P. Gu, X.Y. Mao, X.B. Chen, Effect of Nd modification on electrical properties of mixed-layer Aurivillius phase Bi4Ti3O12–SrBi4Ti4O15. J. Appl. Phys. 102, 024102 (2007). https://doi.org/10.1063/1.2753582

    Article  CAS  Google Scholar 

  30. J. Zhu, X.B. Chen, J.H. He, J.C. Shen, Raman scattering investigations on lanthanum-doped Bi4Ti3O12–SrBi4Ti4O15 intergrowth ferroelectrics. J. Solid State Chem. 178, 2832–2837 (2005). https://doi.org/10.1016/j.jssc.2005.06.028

    Article  CAS  Google Scholar 

  31. J. Wang, L. Li, R. Peng, Z. Fu, M. Liu, Y. Lu, Structural evolution and multiferroics in Sr-doped Bi7Fe1.5Co1.5Ti3O21 ceramics. J. Am. Ceram. Soc. 98(5), 1528–1535 (2015). https://doi.org/10.1111/jace.13495

    Article  CAS  Google Scholar 

  32. V. Veenachary, E. Venkata Ramana, G.S. Kumar, G. Prasad, N.V. Prasad, Electrical studies on Bi4NdTi3Fe0.7Co0.3O15-Bi3NdTi2Fe0.7Co0.3O12–δ intergrowth Aurivillius. Trans. Ind. Ceram. Soc. 79, 113–119 (2020). https://doi.org/10.1080/0371750X.2020.1760139

    Article  CAS  Google Scholar 

  33. H.E. Mgbemere, T.T. Akano, G.A. Schneider, Effect of bismuth titanate on the properties of potassium sodium niobate-based ceramics. J. Asian Ceram. Soc. 5(1), 49–55 (2017). https://doi.org/10.1016/j.jascer.2016.12.006

    Article  Google Scholar 

  34. W. Fan, X. Jiang, C. Chen, X. Huang, X. Nie, X. Wang, Electrical properties and Curie temperature of Li/Ce co-doped BaBi4Ti4O15–Bi4Ti3O12 intergrowth ceramics. Ceram. Int. 48(2), 2833–2842 (2022). https://doi.org/10.1016/j.ceramint.2021.10.073

    Article  CAS  Google Scholar 

  35. B. Shobhan-Babu, S. Narendra-Babu, G. Prasad, G.S. Kumar, N.V. Prasad, Structure and dielectric properties of Sm3+ modified Bi4Ti3O12-SrBi4Ti4O15 intergrowth ferroelectrics. Process. Appl. Ceram. 14(3), 260–267 (2020). https://doi.org/10.2298/PAC2003260S

    Article  Google Scholar 

  36. S. Sun, X. Yin, Engineered layer-stacked interfaces inside Aurivillius-type layered oxides enables superior ferroelectric property. Curr. Comput.-Aided Drug Des. 10(8), 710 (2020). https://doi.org/10.3390/cryst10080710

    Article  CAS  Google Scholar 

  37. J.P. Kumar, K.S.K.R.C. Sekhar, T. Durga Rao, P.D. Babu, P. Tirupathi, Effect of sintering temperature on structural, dielectric, and electrical property studies of Bi4NdTi3FeO15 Aurivillius ceramics. J. Mater. Sci.: Mater. Electron. 32, 9675–9684 (2021). https://doi.org/10.1007/s10854-021-05628-9

    Article  CAS  Google Scholar 

  38. W.C. Ferreira, G.L.C. Rodrigues, B.S. Araújo, F.A.A. de Aguiar, A.N.A. de Abreu Silva, P.B.A. Fechine, C.W. de Araujo Paschoal, A.P. Ayala, Pressure-induced structural phase transitions in the multiferroic four-layer Aurivillius ceramic Bi5FeTi3O15. Ceram. Int. 46(11), 18056–18062 (2020). https://doi.org/10.1016/j.ceramint.2020.04.122

    Article  CAS  Google Scholar 

  39. S. Sun, Z. Chen, G. Wang et al., Nanoscale structural modulation and low-temperature magnetic response in mixed-layer Aurivillius-type oxides. Sci. Rep. 8, 871 (2018). https://doi.org/10.1038/s41598-018-19448-1

    Article  CAS  Google Scholar 

  40. L. Sheng, X. Du, Q. Chao, P. Zheng, W. Bai, L. Li, F. Wen, W. Wu, L. Zheng, Enhanced electrical properties in Nd and Ce co-doped CaBi4Ti4O15 high temperature piezoceramics. Ceram. Int. 44, 18316–18321 (2018). https://doi.org/10.1016/j.ceramint.2018.07.044

    Article  CAS  Google Scholar 

  41. T.P. Wendari, S. Arief, N. Mufti, A. Insani, J. Baas, G.R. Blake, Zulhadjri, Structure-property relationships in the lanthanide-substituted PbBi2Nb2O9 Aurivillius phase synthesized by the molten salt method. J. Alloys Compd. 860, 158440 (2021). https://doi.org/10.1016/j.jallcom.2020.158440

  42. N. Thirumal Reddy, N.V. Prasad, G.S. Kumar, G. Prasad, Electrical studies on Zr-modified Bi3.25La0.75Ti3O12: a promising FRAM ceramic. Phase Transit. 87(12), 1246–1254 (2014). https://doi.org/10.1080/01411594.2014.948439

    Article  CAS  Google Scholar 

  43. S.N. Padamavath, J. Omprakash, C.H. Sameera Devi, M. Vithal, G. Prasad, G.S. Kumar, Effect of simultaneous doping of Pr and Sm on electrical conductivity and relaxation process in BLSF-SrBi4Ti4O15. Ferroelectrics 474, 83–98 (2015). https://doi.org/10.1080/00150193.2015.996447

    Article  CAS  Google Scholar 

  44. Y. Chen, J. Xu, S. Xie, Z. Tan, R. Nie, Z. Guan, Q. Wang, J. Zhu, Ion doping effects on the lattice distortion, and interlayer mismatch of Aurivillius-type bismuth titanate compounds. Materials 11(5), 821 (2018). https://doi.org/10.3390/ma11050821

    Article  CAS  Google Scholar 

  45. Q. Chang, H. Fan, C. Long, Effect of isovalent lanthanide cations compensation for volatilized A-site bismuth in Aurivillius ferroelectric bismuth titanate. J. Mater. Sci.: Mater. Electron. 28, 4637–4646 (2017). https://doi.org/10.1007/s10854-016-6102-0

    Article  CAS  Google Scholar 

  46. S.K. Rout, A. Hussian, J.S. Lee, I.W. Kim, S.I. Woo, Impedance spectroscopy and morphology of SrBi4Ti4O15 ceramics prepared by soft chemical method. J. Alloys Compd. 477(1), 706–711 (2009). https://doi.org/10.1016/j.jallcom.2008.10.125

    Article  CAS  Google Scholar 

  47. N.V. Prasad, G. Prasad, T. Bhimasankaram, Impedance studies on GdBi5Fe2Ti3O18 ceramic. Int. J. Mod. Phys. B 15(14), 2053–2064 (2001). https://doi.org/10.1142/S0217979201004976

    Article  CAS  Google Scholar 

  48. A.K. Jonscher, The ‘Universal’ dielectric response. Nature 267, 673–679 (1977)

    Article  CAS  Google Scholar 

  49. J.R. Macdonald, W.B. Johnson, Fundamentals of Impedance spectroscopy. Impedance Spectrosc. Theory Exp. Appl. (2018). https://doi.org/10.1002/9781119381860.ch1

    Article  Google Scholar 

  50. D.C. Sinclair, A.R. West, Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance. J. Appl. Phys. 66(8), 3850–3856 (1989). https://doi.org/10.1063/1.344049

    Article  CAS  Google Scholar 

  51. P. Gupta, P.K. Mahapatra, R.N.P. Choudhary, Structural and electrical characteristics of rare-earth modified bismuth layer structured compounds. J. Alloys Compd. 863, 158457 (2021). https://doi.org/10.1016/j.jallcom.2020.158457

    Article  CAS  Google Scholar 

  52. K. Dahake, P. Jain, O. Subohi, Impedance spectroscopy, dielectric, ferroelectric and electrical transport properties of Ba-doped Bi3TiNbO9 ceramics. J. Mater. Sci.: Mater. Electron. 32, 26770–26785 (2021). https://doi.org/10.1007/s10854-021-07054-3

    Article  CAS  Google Scholar 

  53. E.V. Ramana, F. Figueiras, M.P.F. Graça, M.A. Valente, Observation of magnetoelectric coupling and local piezo response in modified (Na0.5Bi0.5)TiO3–BaTiO3-CoFe2O4 lead free composites. Dalton Trans. 43, 9934 (2014). https://doi.org/10.1039/C4DT00956H

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One author (V Veenachary) is thankful to CSIR-HRDG, New Delhi for providing JRF/SRF. Partial funding by the grants from OU-DST PURSUE-II/80//2021 program is also thankfully acknowledged.

Funding

This work was partially supported by OU-DST PURSUE-II/80//2021 and CSIR-HRDG, No: 09/132(0875)/2018-EMR-I, New Delhi for providing Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, impedance and ME measurements were made by VV. Raman spectroscopic measurements were performed by VSP. XRD and SEM measurements were made by SNB. The first draft of the manuscript was written by VV. NVP and GP reviewed and edited the manuscript, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to N. V. Prasad.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veenachary, V., Puli, V.S., Babu, S.N. et al. Electrical and magnetic studies on promising Aurivillius intergrowth compound. J Mater Sci: Mater Electron 33, 22614–22627 (2022). https://doi.org/10.1007/s10854-022-09039-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09039-2

Navigation