Skip to main content
Log in

Evolution of weak ferroelectricity dielectric response in PbZrO3 antiferroelectric thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, the ferroelectric domain wall contributions to the permittivity is investigated in a PbZrO3 antiferroelectric thin film far from its antiferroelectric-ferroelectric field transition EAF (E ≤ 150 kV/cm). The lattice contribution to the permittivity increases as function of polarization electric field EDC but also presents two additional small peaks. The increase is due to the antiparallel dipoles reoriented along the electric field direction (antiferroelectric contribution) and the two peaks correspond to a ferroelectric butterfly loop. The two phenomena are added to the permittivity, which make it difficult to decorrelate them. The vibration and pinning/unpinning contributions of the domain walls present only a ferroelectric butterfly loops but they do not tend to zero at infinite fields, which suggests that the ferroelectricity does not disappear completely. Dielectric losses decrease as a function of the polarization (Lorentzian function) due to a reduction of the ferroelectric domain walls density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. K. Boldyreva, D. Bao, G. Le Rhun, L. Pintilie, M. Alexe, D. Hesse, Microstructure and electrical properties of (120) O-oriented and of (001) O-oriented epitaxial antiferroelectric PbZrO3 thin films on (100) SrTiO3 substrates covered with different oxide bottom electrodes. J. Appl. Phys. 102(4), 044111 (2007). https://doi.org/10.1063/1.2769335

    Article  CAS  Google Scholar 

  2. L. Pintilie, K. Boldyreva, M. Alexe, D. Hesse, Coexistence of ferroelectricity and antiferroelectricity in epitaxial PbZrO3 films with different orientations. J. Appl. Phys. 103(2), 024101 (2008). https://doi.org/10.1063/1.2831023

    Article  CAS  Google Scholar 

  3. X. Dai, J.-F. Li, D. Viehland, Weak ferroelectricity in antiferroelectric lead zirconate. Phys. Rev. B 51(5), 2651–2655 (1995). https://doi.org/10.1103/PhysRevB.51.2651

    Article  CAS  Google Scholar 

  4. M.D. Coulibaly, C. Borderon, R. Renoud, H.W. Gundel, Effect of ferroelectric domain walls on the dielectric properties of PbZrO 3 thin films. Appl. Phys. Lett. 117(14), 142905 (2020). https://doi.org/10.1063/5.0017984

    Article  CAS  Google Scholar 

  5. C. Borderon, R. Renoud, M. Ragheb, H.W. Gundel, Description of the low field nonlinear dielectric properties of ferroelectric and multiferroic materials. Appl. Phys. Lett. 98(11), 112903 (2011). https://doi.org/10.1063/1.3567777

    Article  CAS  Google Scholar 

  6. C. Borderon, A.E. Brunier, K. Nadaud, R. Renoud, M. Alexe, H.W. Gundel, Domain wall motion in Pb (Zr0.20Ti0.80)O3 epitaxial thin films. Sci. Rep. (2017). https://doi.org/10.1038/s41598-017-03757-y

    Article  Google Scholar 

  7. K. Vaideeswaran, K. Shapovalov, P.V. Yudin, A.K. Tagantsev, N. Setter, Moving antiphase boundaries using an external electric field. Appl. Phys. Lett. 107(19), 192905 (2015). https://doi.org/10.1063/1.4935122

    Article  CAS  Google Scholar 

  8. M.D. Coulibaly, C. Borderon, R. Renoud, H.W. Gundel, Enhancement of PbZrO3 polarization using a Ti seed layer for energy storage application. Thin Solid Films 716, 138432 (2020). https://doi.org/10.1016/j.tsf.2020.138432

    Article  CAS  Google Scholar 

  9. G.-T. Park, J.-J. Choi, C.-S. Park, J.-W. Lee, H.-E. Kim, Piezoelectric and ferroelectric properties of 1-μm-thick lead zirconate titanate film fabricated by a double-spin-coating process. Appl. Phys. Lett. 85(12), 2322–2324 (2004). https://doi.org/10.1063/1.1794354

    Article  CAS  Google Scholar 

  10. M.D. Coulibaly, C. Borderon, R. Renoud, H.W. Gundel, Crystallographic orientation dependence of ferroelectric domain walls in antiferroelectric lead zirconate thin films. Curr. Appl. Phys. 39, 283–288 (2022). https://doi.org/10.1016/j.cap.2022.05.009

    Article  Google Scholar 

  11. H. Guo, X. Tan, Direct observation of the recovery of an antiferroelectric phase during polarization reversal of an induced ferroelectric phase. Phys. Rev. B 91(14), 144104 (2015). https://doi.org/10.1103/PhysRevB.91.144104

    Article  CAS  Google Scholar 

  12. X. Tan, C. Ma, J. Frederick, S. Beckman, K.G. Webber, The antiferroelectric ↔ ferroelectric phase transition in lead-containing and lead-free perovskite ceramics. J. Am. Ceram. Soc. 94(12), 4091–4107 (2011). https://doi.org/10.1111/j.1551-2916.2011.04917.x

    Article  CAS  Google Scholar 

  13. J. Wang, T. Yang, S. Chen, X. Yao, A. Peláiz-Barranco, DC electric field dependence for the dielectric permittivity in antiferroelectric and ferroelectric states. J. Alloys Compd. 587, 827–829 (2014). https://doi.org/10.1016/j.jallcom.2013.10.251

    Article  CAS  Google Scholar 

  14. D. Damjanovic, Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep. Prog. Phys. 61(9), 1267–1324 (1998). https://doi.org/10.1088/0034-4885/61/9/002

    Article  CAS  Google Scholar 

  15. K. Nadaud, C. Borderon, R. Renoud, H.W. Gundel, Decomposition of the different contributions to permittivity, losses, and tunability in BaSrTiO3 thin films using the hyperbolic law. J. Appl. Phys. 119(11), 114101 (2016)

    Article  Google Scholar 

  16. J.Y. Jo, H.S. Han, J.-G. Yoon, T.K. Song, S.-H. Kim, T.W. Noh, Domain switching kinetics in disordered ferroelectric thin films. Phys. Rev. Lett. 99(26), 267602 (2007). https://doi.org/10.1103/PhysRevLett.99.267602

    Article  CAS  Google Scholar 

  17. Masruroh, and M. Toda, Asymmetric hysteresis loops, leakage current and capacitance voltage behaviors in ferroelectric PZT films deposited on a Pt/Al2O3/SiO2/Si substrate by MOCVD method with a vapor-deposited gold top electrode. Int. J. Appl. Phys. Math. (2011). https://doi.org/10.7763/IJAPM.2011.V1.28

    Article  Google Scholar 

  18. M. Coulibaly, “Optimisation de couches minces de PZT antiferroélectrique pour le stockage d’énergie” (Doctoral Dissertation, Washington, 2019)

    Google Scholar 

  19. P.S.A. Kumar, B. Panda, S.K. Ray, B.K. Mathur, D. Bhattacharya, K.L. Chopra, Effect of electrode microstructure on leakage current in lead–lanthanum–zirconate–titanate multilayer capacitors. Appl. Phys. Lett. 68(10), 1344–1346 (1996). https://doi.org/10.1063/1.115929

    Article  CAS  Google Scholar 

  20. V.P. Afanasjev, A.A. Petrov, I.P. Pronin, E.A. Tarakanov, E.J. Kaptelov, J. Graul, Polarization and self-polarization in thin PbZr 1–x Ti x O 3 (PZT) films. J. Phys. Condens. Matter. 13(39), 8755–8763 (2001). https://doi.org/10.1088/0953-8984/13/39/304

    Article  CAS  Google Scholar 

  21. J.H. Jeong, Y.H. Kim, J.S. Kim, I.W. Kim, B.M. Jin, S.H. Bae, Antiferroelectric and conduction properties of Pb0. 975La0. 025 (Zr0. 950Ti0. 050) O3 thin films fabricated by using pulsed laser deposition. J. Korean Phys. Soc. 44(6), 1521 (2004)

    CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

MDC: Conceptualization, Methodology, Writing—review & editing. CB: Supervision, Visualization, Writing—review & editing. RR: Supervision, Visualization. HWG: Supervision, Visualization.

Corresponding author

Correspondence to Mamadou D. Coulibaly.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coulibaly, M.D., Borderon, C., Renoud, R. et al. Evolution of weak ferroelectricity dielectric response in PbZrO3 antiferroelectric thin films. J Mater Sci: Mater Electron 33, 22580–22587 (2022). https://doi.org/10.1007/s10854-022-09036-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09036-5

Navigation