Skip to main content
Log in

Wet-electrochemical growth of CdTe layers for photovoltaic applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cadmium telluride (CdTe) thin films have been prepared using a low-cost potentiostatic electrochemical technique from an aqueous electrolyte. A standard three-electrode geometry was employed for the deposition of the samples. The possible growth potentials for the electrodeposition of CdTe were optimized using cyclic voltammetry. The samples were grown at potentials − 0.5, − 0.6, and− 0.7 V with respect to Ag/AgCl reference electrode and annealed at 450 °C for 20 min. The optical, structural, morphological, compositional, and electrical properties were studied with a range of analytical techniques. The as-prepared samples exhibited amorphous behavior and the polycrystalline nature with cubic crystal structure was revealed after annealing. The annealed sample grown at -0.7 V exhibits pure CdTe reflections without the TeO2 phase. The Raman analysis confirms the reduction in the A1 mode of Te systematically with increasing the growth potential and vanishes completely for the sample grown at − 0.7 V. Uniform, densely packed, and spherical surface morphology with stoichiometric CdTe (Cd:Te composition ratio 1:1) layers were obtained at − 0.7 V. The Te–Cd and Te–O bonds were revealed in XPS core-level spectra; however, the increased peak intensity ratio of Te 3d5/2 and Te 3d3/2 confirms the reduction of the TeO2 phase in CdTe. The increased carrier concentration and flat band potential calculated for the sample grown at − 0.7 V demonstrate the growth of low-defective and highly crystalline CdTe layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data produced during the experiments are available within the manuscript.

References

  1. B. Basol, B. McCandless, J. Photonics Energy (2014). https://doi.org/10.1117/1.JPE.4.040996

    Article  Google Scholar 

  2. D. Demir, A. Tursxucu, M. Eroglu, J. Anal. At Spectrom. (2012). https://doi.org/10.1039/c2ja30092c

    Article  Google Scholar 

  3. D. Wu, M. Zhiheng, H. Yanbing, P. Lin, S. Zhifeng, X. Chen, Y. Tian, X. Li, H. Yuan, Y. Tsang, A.C.S. Appl, Mater. Interfaces (2021). https://doi.org/10.1021/acsami.1c11277

    Article  Google Scholar 

  4. T. Nagaura, H. Phan, V. Malgras, T. Pham, H. Lim, A. Ashok, J. Kim, J. You, N. Nguyen, Y. Yamauchi, Angew. Chem. Int. Ed. (2021). https://doi.org/10.1117/1.JPE.4.04099610.1002/anie.202013541

    Article  Google Scholar 

  5. M. Green, E. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, X. Hao, Solar cell efficiency tables (version 57). Prog. Photovolt Res. Appl. (2021). https://doi.org/10.1002/pip.3303

    Article  Google Scholar 

  6. K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, K. Yamamoto, Nat. Energy. (2017). https://doi.org/10.1038/nenergy.2017.32

    Article  Google Scholar 

  7. S. Ruhle, Sol. Energy (2016). https://doi.org/10.1016/j.solener.2016.02.015

    Article  Google Scholar 

  8. S. Kim, J. Suh, T. Kim, J. Hong, S. Cho, Opt. express (2019). https://doi.org/10.1364/OE.27.022017

    Article  Google Scholar 

  9. S. Hu, Z. Zhu, W. Li, L. Feng, L. Wu, J. Zhang, J. Gao, AIP Adv. (2011). https://doi.org/10.1063/1.3663613

    Article  Google Scholar 

  10. K. Shen, Xi. Wang, Y. Zhang, H. Zhu, Z. Chen, C. Huang, Y. Mai, Sol. Energy (2020). https://doi.org/10.1016/j.solener.2020.02.083

    Article  Google Scholar 

  11. A. Ngoupo, S. Ouedraogo, F. Zougmoré, J. Ndjaka, Int. J. Photoenergy (2015). https://doi.org/10.1155/2015/961812

    Article  Google Scholar 

  12. J. Wang, S. Liu, Y. Mu, L. Yang, J. Yang, S. Feng, M. Shi, W. Yang, W. Fu, H. Yang, J. Alloys Compd. (2018). https://doi.org/10.1016/j.jallcom.2018.03.226

    Article  Google Scholar 

  13. R. Kulkarni, S. Rondiya, A. Pawbake, R. Waykar, A. Jadhavar, V. Jadkar, A. Bhorde, A. Date, H. Pathan, S. Jadkar, Energy Procedia (2017). https://doi.org/10.1016/j.egypro.2017.03.126

    Article  Google Scholar 

  14. G. Perrier, R. Philippe, J. Dodelet, J. Mater. Res. (1988). https://doi.org/10.1557/JMR.1988.1031

    Article  Google Scholar 

  15. K. Rahmana, M. Harif, S. Abdullahc, S. Tiong, N. Amin, Results in Phys. (2019). https://doi.org/10.1016/j.rinp.2020.103213

    Article  Google Scholar 

  16. A. Rohom, P.U. Londhe, G.R. Bhand, M. Lakheand, N.B. Chaure, J. Mater. Sci. Mater. Electron. (2016). https://doi.org/10.1007/s10854-016-5104-2

    Article  Google Scholar 

  17. M. Panicker, M. Knaster, F. Kroger, J. Electrochem. Soc. (1978). https://doi.org/10.1149/1.2131499

    Article  Google Scholar 

  18. M. Osial, J. Jackowska, J. Solid State Electrochem. (2013). https://doi.org/10.1007/s10008-013-2125-0

    Article  Google Scholar 

  19. J. Major, Semicond. Sci. Technol. (2016). https://doi.org/10.1088/0268-1242/31/9/093001

    Article  Google Scholar 

  20. A. Acevedo, Sol. Energy Mater. Sol. Cells. (2006). https://doi.org/10.1016/j.solmat.2006.02.019

    Article  Google Scholar 

  21. H. Salim, V. Patel, A. Abbas, J. Walls, I. Dharmadasa, J. Mater. Sci. Mater. Electron. (2015). https://doi.org/10.1007/s10854-015-2805-x

    Article  Google Scholar 

  22. M. Soliman, A. Kashyout, M. Shabana, M. Elgamal, Renew. Energy (2001). https://doi.org/10.1016/S0960-1481(00)00153-1

    Article  Google Scholar 

  23. J. Enrıquez, X. Mathew, Sol. Energy Mate.r Sol. Cells. (2004). https://doi.org/10.1016/j.solmat.2003.11.012

    Article  Google Scholar 

  24. A. Ojo, I. Dharmadasa, J. Mater. Sci. Mater. Electron. (2017). https://doi.org/10.1007/s10854-017-7264-0

    Article  Google Scholar 

  25. A. Alwany, O. Samir, M. Algradee, M. Hafith, M. Abdel-Rahim, World J. Condens. Matter. Phys. (2015). https://doi.org/10.4236/wjcmp.2015.53023

    Article  Google Scholar 

  26. B.D. Cullity, S.R. Stock, Elements of X-Ray Diffraction (Prentice Hall, New York, 1956), pp.324–326

    Google Scholar 

  27. G.K. Williamson, W.H. Hall, Acta. Metall. (1953). https://doi.org/10.1016/0001-6160(53)90006-6

    Article  Google Scholar 

  28. E. Shaaban, A. Metawa, A. Almohammedi, H. Algarni, A. Hassan, G. Ali, A. Ashour, Mater. Res. Express (2018). https://doi.org/10.1088/2053-1591/aad1bf

    Article  Google Scholar 

  29. P.U. Londhe, N.B. Chaure, Mater. Sci. Semicond. Process. (2017). https://doi.org/10.1016/j.mssp.2016.12.005

    Article  Google Scholar 

  30. S. Navale, V. Ravi, I. Mulla, Sens. Actuators B. (2009). https://doi.org/10.1016/j.snb.2009.03.068

    Article  Google Scholar 

  31. K. Deepalakshmi, A. Alfind Paul Frit, N. Prithivikumaran, N. Jeyakumaran., Int. J. Eng. Res. Technol (IJERT) ISSN: 2278–0181 Published by, www.ijert.org NSNMN-2015 Conference Proceedings.

  32. D. Liu, J. Chen, L. Wu, D. Wang, Appl. Phys. Lett. (2018). https://doi.org/10.1063/1.5041021

    Article  Google Scholar 

  33. J.R. Cárdenas, H. Sobral, Mater. (2017). https://doi.org/10.3390/ma10060607

    Article  Google Scholar 

  34. C.F. Reyes, J.R. Contreras, J.R. Molina-Contreras, C. Medina-Gutiérrez, S. Calixto, Spectrochim. Acta. A (2006). https://doi.org/10.1016/j.saa.2005.07.082

    Article  Google Scholar 

  35. M. Arreguín-Campos, Z.B.K. Gutiérrez, J.G. Quiñones-Galván, J. Santos-Cruz, S.A. Mayén-Hernández, O. Zelaya-Angel, M. Olvera, G. Contreras-Puente, F. de Moure-Flores, J. Electron. Mater. (2019). https://doi.org/10.1007/s11664-019-07114-9

    Article  Google Scholar 

  36. G.G. Rusu, M. Rusu, E.K. Polychroniadisa, J. Optoelectron. Adv. Mater. 7, 1957 (2005)

    CAS  Google Scholar 

  37. N.B. Chaure, J.P. Nair, R. Jayakrishnan, V. Ganesan, R.K. Pandey, Thin Solid Films (1998). https://doi.org/10.1016/S0040-6090(97)01209-1

    Article  Google Scholar 

  38. S. Ozmen, H. Gubur, Bull. Mater. Sci. (2022). https://doi.org/10.1007/s12034-021-02653-6

    Article  Google Scholar 

  39. N.B. Chaure, A. Samantilleke, I.M. Dharmadasa, Sol. Energy Mater. Sol. Cells (2003). https://doi.org/10.1016/S0927-0248(02)00351-3

    Article  Google Scholar 

  40. H. Luo, L. Ma, W. Xie, Z. Wei, K. Gao, F. Zhang, X. Wu, Appl. Phys. A (2016). https://doi.org/10.1007/s00339-016-9738-y

    Article  Google Scholar 

  41. P. Perez, M. Farías, R. Castro-Rodríguez, J. Pena, F. Caballero-Briones, W. Cauich, Superf. y Vacio 12, 8 (2001)

    Google Scholar 

  42. S.M. Sze, K.N. Kwok, Metal-semiconductor contacts, in Physics of Semiconductor Devices. ed. by S.M. Sze (Wiley, New York, 2006), pp.134–196

    Chapter  Google Scholar 

  43. M. Lakhe, N.B. Chaure, J. Mater. Sci. Eng. (2015). https://doi.org/10.4172/2169-0022.1000204

    Article  Google Scholar 

  44. M. Demiriz, A. Peksoz, J. Mater. Sci.: Mater. Electron. (2019). https://doi.org/10.1007/s10854-019-01187-2

    Article  Google Scholar 

  45. B. Lv, B. Yan, P. Cai, Z.Y. Gao, Y. Li, N. Chen, C. Sui, Q. Lin, G. Cheng, X. Wu, Semicond. Sci. Technol. (2019). https://doi.org/10.1088/1361-6641/ab4ad3

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support received from SERB, ISRO, and UGC-DAE.

Funding

Science and engineering research board,Indian Space Research Organisation

Author information

Authors and Affiliations

Authors

Contributions

AU: Material preparation, data collection, formal analysis, and the writing of the first draft of the manuscript. SMS: Contributed to the experimentation, data collection, and formal analysis. SC: Conceptualization, Writing—Review & Editing, Project administration, Funding acquisition, Supervision. NBC: Conceptualization, Writing—Review & Editing, Supervision, Project administration, Funding acquisition.

Corresponding author

Correspondence to Nandu B. Chaure.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal, relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ukarande, A., Sonawane, S.M., Chaure, S. et al. Wet-electrochemical growth of CdTe layers for photovoltaic applications. J Mater Sci: Mater Electron 33, 22456–22468 (2022). https://doi.org/10.1007/s10854-022-09022-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09022-x

Navigation