Skip to main content
Log in

Effect of A (A = Li, Na, K) doping on structure and electrical properties of Mn1.2Ni0.3Co1.5O4 polycrystalline ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, the alkali metal (Li/Na/K) doping has been achieved by using the sol–gel method, and the thermally sensitive ceramic Mn1.2Ni0.3Co1.5−x (Li/Na/K)xO4 has been subsequently obtained by the traditional solid-phase sintering and two-step sintering methods. XRD results revealed that the doping of Li/Na/K did not introduce any impurity phases other than the cubic spinel phase of MnCo2O4. The SEM analysis demonstrated that the doping of Li enhanced the grain size, whereas the Na and K doping decreased the grain size from 3.98 μm and 3.23 μm to 3.58 μm and 2.71 μm. In addition, the grain size of the ceramic samples sintered in the second step was noted to be relatively uniform. For the Li-doped samples, the resistivity of the traditional and two-step sintered thermal ceramic samples exhibited an increasing trend from 6.17 μm and 6.5 μm to 12.72 μm and 7.88 μm. The alkali metal (Li/Na/K) doping reduced the resistivity of the Mn1.2Ni0.3Co1.5−xAXO4 (A = Li, Na, K) thermal ceramics. The findings reported in this study confirm that the Mn1.2Ni0.3Co1.5−x (Li/Na/K)xO4 family exhibits a high potential of as the low-temperature NTC heat-sensitive materials. The alkali-metal-doped manganese-based ceramics are traditionally thermally sensitive materials with high resistance and high B, while low B high-resistance materials have rarely been reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T. Zhu, Z.Y. Ang, G.W. Ho, R.S.C. Adv, Self-assembly formation of NiCo2O4 superstructures with porous architectures for electrochemical capacitors. RSC Adv. 5(66), 53259–53266 (2015)

    Article  CAS  Google Scholar 

  2. U.K. Sinha, B. Dasand, P. Padhan, Interfacial reconstruction in the La0.7Sr0.3MnO3 thin films: giant low-field magnetoresistance. Nanoscale Adv. (2020). https://doi.org/10.1039/d0na00287a

    Article  Google Scholar 

  3. A. Feteira, Negative temperature coefficient resistance (NTCR) ceramic thermistors: an industrial perspective. J. Am. Ceram. Soc. 92(5), 967–983 (2009)

    Article  CAS  Google Scholar 

  4. L.L. Hench, J. West, The sol-gel process. Chem. Rev. 90, 33–72 (1990)

    Article  CAS  Google Scholar 

  5. H.M. Zhang, A.M. Chang, G. Fang, L.J. Zhao, Q. Zhao, J.C. Yao, X. Huang, The optimal synthesis condition by sol–gel method and electrical properties of Mn1.5−xCo1.5NixO4 ceramics. Ceram. Int. 40(6), 7865–7872 (2014)

    Article  CAS  Google Scholar 

  6. H.B. Li, T.I.P. Ley, X.H. Ma, X. Sang, H.M. Zhang, A.M. Chang, Electrical properties and aging behavior of Na-doped Mn1.95Co0.21Ni0.84O4 NTC ceramics. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.06.218

    Article  Google Scholar 

  7. S. Liang, D.D. Zhao, M.M. Cui, H.B. Li, X. Zhang, Two-step sintering of submicro-grain Ni0.54Mn1.26Fe1.2O4 NTC ceramics with an excellent electrical performance. J. Mater. Sci.: Mater. Electron. 30, 20144–20153 (2019)

    CAS  Google Scholar 

  8. Y.F. Zhao, Y.X. Xie, F. Zhang, Liquid phase sintering and properties of Mn0.6Ni0.9Co1.5-xLixO4-LiF thermosensitive ceramics. J. Mater. Sci.: Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-04536-8

    Article  Google Scholar 

  9. Y.F. Zhao, Y.X. Xie, NTC thermo-sensitive ceramics with low B value and high resistance at low temperature in Li-doped Mn0.6Ni0.9Co1.5O4 system. J. Mater. Sci.: Mater. Electron. 31(2), 1403–1410 (2020)

    CAS  Google Scholar 

  10. B. Wang, J.H. Wang, A.M. Chang, J.C. Yao, Bismuth trioxide-tailored sintering temperature, microstructure and NTCR characteristics of Mn1.1Co1.5Fe0.4O4 ceramics. RSC Adv. 9, 25488 (2019)

    Article  CAS  Google Scholar 

  11. J.J. Zhang, Y. Zheng, J.X. Chen, W. Zhou, Y.J. Zhao, P. Feng, Microstructures and mechanical properties of Mo2FeB2-based cermets prepared by two-step sintering technique. Int. J. Refract. Metal. Hard Mater. 72, 56–62 (2018)

    Article  CAS  Google Scholar 

  12. J.D. Bolton, A.J. Gant, Microstructural development and sintering kinetics in ceramic reinforced high speed steel metal matrix composites. Powder Metall. 40(2), 143–151 (1997)

    Article  CAS  Google Scholar 

  13. X. Huang, T.P. Xiu, M.E. Badding, Z.Y. Wen, Two-step sintering strategy to prepare dense Li-garnet electrolyte ceramics with high Li+ conductivity. Ceram. Int. 44, 5660–5667 (2018)

    Article  CAS  Google Scholar 

  14. R. Takano, K. Tadanaga, A. Hayashi, M. Tatsumisago, Low temperature synthesis of Al-doped Li7La3Zr2O12 solid electrolyte by a sol-gel process. Solid State Ion. 255, 104–107 (2014)

    Article  CAS  Google Scholar 

  15. X.M. Pang, J.H. Qiu, K.J. Zhu, J.Z. Du, (K, Na)NbO3-based lead-free piezoelectric ceramics manufactured by two-step sintering. Ceram. Int. 38, 2521–2527 (2012)

    Article  CAS  Google Scholar 

  16. J.H. Ji, J. Kim, J.H. Koh, Improved dielectric and piezoelectric properties of K/Na excessed (Na, K)NbO3 lead-free ceramics by the two step sintering process. J. Alloys Compd. 698, 938–943 (2017)

    Article  CAS  Google Scholar 

  17. J.L. Zhang, Y.L. Qin, Y. Gao, W.Z. Yao, M. Zhao, Improvement of physical properties for KNN-based ceramics by modified two-step sintering. J. Am. Ceram. Soc. 97(3), 759–764 (2014)

    Article  CAS  Google Scholar 

  18. D. Fan, L.-Q. Chen, S.-P.P. Chen, Numerical simulation of zener pinning with growing second-phase particles. J. Am. Ceram. Soc. 81, 526–532 (1998)

    Article  CAS  Google Scholar 

  19. A. Hjm, A. Wkj, B. Smy, Microstructural freezing of highly NIR transparent Y2O3-MgO nanocomposite via pressure-assisted two-step sintering. J. Eur. Ceram. Soc. 39(15), 4957–4964 (2019)

    Article  Google Scholar 

  20. C.J. Ma, H. Gao, TEM and electrical properties characterizations of Co0.98Mn2.02O4 NTC ceramic. J. Alloys Compd. 749, 853–858 (2018)

    Article  CAS  Google Scholar 

  21. X. Sun, S.L. Leng, H. Zhang, Z.L. He, Z.C. Li, Electrical properties and temperature sensitivity of Li/Mg modified Ni0.7Zn0.3O based ceramics. J. Alloys Compd. 763, 975–982 (2018)

    Article  CAS  Google Scholar 

  22. X. Sun, Z.C. Li, W.Y. Fu, S.Y. Chen, H. Zhang, Li/Fe modified Zn0.3Ni0.7O NTC thermistors with adjustable resistivities and temperature sensitivity. J. Mater. Sci.: Mater. Electron. 29, 343–350 (2018)

    CAS  Google Scholar 

  23. A.N. Kamlo, J. Bernard, C. Lelievre, D. Houivet, Synthesis and NTC properties of YCr1−xMnxO3 ceramics sintered under nitrogen atmosphere. J. Eur. Ceram. Soc. 31, 1457–1463 (2011)

    Article  CAS  Google Scholar 

  24. W.G. Wang, X.P. Wang, Y.X. Gao, G.L. Hao, W.Q. Ma, Q.F. Fang, Internal friction study on the lithium ion diffusion of Li5La3M2O12 (M = Ta, Nb) ionic conductors. Solid State Sci. 13, 1760–1764 (2011)

    Article  CAS  Google Scholar 

  25. X.P. Wang, Q.F. Fang, Mechanical and dielectric relaxation studies on the mechanism of oxygen ion diffusion in La2Mo2O9. Phys. Rev. B 65(6), 064304 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the key R & D project of China Xinjiang Uygur Autonomous Region (Grant No. 2021B01001-4).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aimin Chang or Yongxin Xie.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Deng, W., Chen, X. et al. Effect of A (A = Li, Na, K) doping on structure and electrical properties of Mn1.2Ni0.3Co1.5O4 polycrystalline ceramics. J Mater Sci: Mater Electron 33, 22448–22455 (2022). https://doi.org/10.1007/s10854-022-09021-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09021-y

Navigation