Skip to main content
Log in

Spectroscopic and quantum chemical investigation of hexamethylenetetraminium 3, 5-dinitrobenzoate hemihydrate single crystals for optical limiting applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The slow evaporation method has been used to grow hexamethylenetetraminium 3,5-Dinitrobenzoate hemihydrate (HMTNB) single crystals. The single crystal X-ray diffraction investigation confirmed the centrosymmetric space group P \(\overline{1 }\) and triclinic crystalline system of grown HMTNB crystals. The powder X-ray diffraction, 1H, 13C NMR, FTIR, and FT-Raman analysis validated the crystalline nature, molecular arrangement, and functional groups in HMTNB. The intermolecular hydrogen bonding interactions of the HMTNB system have been well understood with the help of Hirshfeld surface study. Lower cutoff wavelength (386 nm) and emission peaks (312, 438, and 482 nm) have been reported in optical absorption and photoluminescence investigations. The dielectric study has revealed that HMTNB has low values of dielectric constant and loss. The photoconductivity study showed that HMTNB has a negative photoconducting nature. The HMTNB has a negative refractive index, and the Z-scan study revealed self-defocusing nature. Optical limiting studies indicate the HMTNB crystal's optical limiting response. Quantum chemical calculations were used to establish inter- and intra-molecular charge transfer mechanisms, as well as the presence of N–H···O, O–H···O and C–H···O hydrogen bonding in HMTNB are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during the theoretical study are available from the corresponding author on reasonable request.

References

  1. H.S. Nalwa, S. Miyata, Nonlinear optics organic molecules of and polymers (CRC Press, USA, 1996)

    Google Scholar 

  2. G. Samuthra, N. Prabavathi, P. Karuppasamy, P. Muthu Senthilpandian, K.A. Ramasamy, J. Mater. Sci. Mater. Electron. 33, 8035–8047 (2022)

    Article  CAS  Google Scholar 

  3. V. Saraswathi, S. Agilan, N. Muthukumarasamy, M.D. UthayakumarVelauthapillai, G. Vinitha, J. Mater. Sci. Mater. Electron. 33, 7883–7899 (2022)

    Article  CAS  Google Scholar 

  4. Z. Li, K. Wu, G. Su, Y. He, Opt. Mater. (Amst). 20, 295–299 (2002)

    Article  CAS  Google Scholar 

  5. M. Krishnakumar, S. Karthick, K. Thirupugalmani, S. Brahadeeswaran, Opt. Mater. (Amst). 66, 79–93 (2017)

    Article  CAS  Google Scholar 

  6. P. Srinivasan, T. Kanagasekaran, N. Vijayan, G. Bhagavannarayana, R. Gopalakrishnan, P. Ramasamy, Opt. Mater. (Amst). 30, 553–564 (2007)

    Article  CAS  Google Scholar 

  7. M.N. Bhat, S.M. Dharmaprakash, J. Cryst. Growth. 243, 526–530 (2002)

    Article  CAS  Google Scholar 

  8. E. Ramachandran, S. Natarajan, Cryst. Res. Technol. 37, 1274–1279 (2002)

    Article  CAS  Google Scholar 

  9. L. Guru Prasad, V. Krishnakumar, R. Nagalakshmi, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 110, 377–382 (2013)

    Article  CAS  Google Scholar 

  10. R. Padmavathy, N. Karthikeyan, D. Sathya, R. Jagan, R. Mohan Kumar, K. Sivakumar, RSC Adv. 6, 68468–68484 (2016)

    Article  CAS  Google Scholar 

  11. M.A. Mahdi, S.R. Yousefi, L.S. Jasim, M. Salavati-Niasari, Int. J. Hydrog. Energy. 47(31), 14319–14330 (2022)

    Article  CAS  Google Scholar 

  12. S.R. Yousefi, H.A. Alshamsi, O. Amiri, M. Salavati-Niasari, J. Mol. Liq. 337, 116405 (2021)

    Article  CAS  Google Scholar 

  13. S.R. Yousefi, D. Ghanbari, M. Salavati-Niasari, M. Hassanpour, J. Mater. Sci. Mater. Electron. 27(2), 1244–1253 (2016)

    Article  CAS  Google Scholar 

  14. S.R. Yousefi, M. Ghanbari, O. Amiri, Z. Marzhoseyni, P. Mehdizadeh, M. Hajizadeh-Oghaz, M. Salavati-Niasari, J. Am. Ceram. Soc. 104(7), 2952–2965 (2021)

    Article  CAS  Google Scholar 

  15. S.R. Yousefi, A. Sobhani, H.A. Alshamsi, M. Salavati-Niasari, RSC Adv. 11(19), 11500–11512 (2021)

    Article  CAS  Google Scholar 

  16. S.R. Yousefi, O. Amiri, M. Salavati-Niasari, Ultrason Sonochem. 58, 104619 (2019)

    Article  CAS  Google Scholar 

  17. S.R. Yousefi, M. Masjedi-Arani, M.S. Morassaei, M. Salavati-Niasari, H. Moayedi, Int. J. Hydrog. Energy. 44(43), 24005–24016 (2019)

    Article  CAS  Google Scholar 

  18. S.R. Yousefi, A. Sobhani, M. Salavati-Niasari, Adv Powder Technol. 28(4), 1258–1262 (2017)

    Article  CAS  Google Scholar 

  19. S.R. Yousefi, D. Ghanbari, N.M. Salavati, J Nanostruct. 6, 77–82 (2016)

    Google Scholar 

  20. S.P. Chen, C.F. Wang, H.T. Zhou, Y.H. Tan, H.R. Wen, Y.Z. Tang, Chem. Phys. Lett. 715, 45–50 (2019)

    Article  CAS  Google Scholar 

  21. S. Vijayalakshmi, S. Kalyanaraman, Spectrochim Acta Part A Mol Biomol. Spectrosc. 120, 14–18 (2014)

    Article  CAS  Google Scholar 

  22. J.E. Bertie, M. Solinas, J. Chem. Phys. 61, 1666–1677 (1974)

    Article  CAS  Google Scholar 

  23. S. Balaprabhakaran, J. Chandrasekaran, B. Babu, R. Thirumurugan, K. Anitha, Mater. Sci.-Pol. (2020).

  24. K. Sathya, P. Dhamodharan, M. Dhandapani, J. Mol. Struct. 1130, 414–424 (2017)

    Article  CAS  Google Scholar 

  25. K. Sathya, P. Dhamodharan, M. Dhandapani, J. Mol. Struct. 1137, 663–673 (2017)

    Article  CAS  Google Scholar 

  26. K. Sathya, P. Dhamodharan, M. Dhandapani, J. Phy. Chem. Solids. 114, 228–239 (2018)

    Article  CAS  Google Scholar 

  27. A. Rathika, R. Ganapathi Raman, Mater Res Innov. 19, 182–186 (2015)

    Article  CAS  Google Scholar 

  28. R.S. Chandra Bose, A. Arunkumar, G. Vinitha, K. Balasubramanian, J. Mater. Sci. Mater. Elect. 32, 2987–2998 (2021)

    Article  Google Scholar 

  29. S. Chantrapromma, H.K. Fun, A. Usman, J. Mol. Struct. 789, 30–36 (2006)

    Article  CAS  Google Scholar 

  30. L.Z. Chen, H. Zhao, J.Z. Ge, R.G. Xiong, H.W. Hu, Cryst. Growth Des. 9, 3828–3831 (2009)

    Article  CAS  Google Scholar 

  31. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, M.C. X. Li, A. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J. V. Ort, D.J. Fox, Gaussian 09, (2010).

  32. A.D. Becke, J. Chem. Phys. 98, 5648–5652 (1993)

    Article  CAS  Google Scholar 

  33. R. Dennington, T.A. Keith, J.M. Millam, K. Eppinnett, W. Hovell, Gauss View, (2003).

  34. S.K. Wolff, D.J. Grimwood, J.J. McKinnon, M.J. Turner, D. Jayatilaka, M.A. Spackman, Crystal Explorer, (2012)

  35. MERCURY 1.3 (2004) Cambridge Crystallographic Data centre, CCDC Software Limited, Cambridge, UK

  36. G. Socrates, Infrared and Raman Characteristic Group Frequencies, 3rd edn. (John Wiely & Sons Ltd., England, 2001)

    Google Scholar 

  37. W.B. Wright, J. Org. Chem. 24, 1362–1363 (1959)

    Article  CAS  Google Scholar 

  38. N.B. Colthup, L.H. Daly, S.E. Wiberley, Introduction to Infrared and Raman Spectroscopy, 3rd edn. (Academic Press Inc, New York, 1990)

    Google Scholar 

  39. I.H. Gul, A.Z. Abbasi, F. Amin, M. Anis-ur-Rehman, A. Maqsood, J. Magn. Magn. Mater. 311, 494–499 (2007)

    Article  CAS  Google Scholar 

  40. J. Zyss, Molecular nonlinear optics: materials, physics, and devices, 1st edn. (Academic Press, New york, 1993)

    Google Scholar 

  41. B. Babu, J. Chandrasekaran, S. Balaprabhakaran, P. Ilayabarathi, Mater Sci-Pol. 31, 151–157 (2013)

    Article  CAS  Google Scholar 

  42. B. Dhanalakshmi, S. Ponnusamy, C. Muthamizhchelvan, V. Subhashini, Mater. Res. Bull. 70, 809–816 (2015)

    Article  Google Scholar 

  43. I.P. Bincy, R. Gopalakrishnan, J. Cryst. Growth. 402, 22–31 (2014)

    Article  CAS  Google Scholar 

  44. M. Krishnakumar, S. Karthick, G. Vinitha, K. Thirupugalmani, B. Babu, S. Brahadeeswaran, Mater. Lett. 235, 35–38 (2019)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MS Methodology, Investigation, Data Curation and Original Draft Preparation; JC Conceptualization, Supervision and Writing – Review & Editing; MK Writing – Review & Editing; BB – Data Validation and Writing – Review & Editing; VM Writing – Review & Editing; GV –Investigation (Z-Scan).

Corresponding author

Correspondence to J. Chandrasekaran.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saravanakumar, M., Chandrasekaran, J., Krishnakumar, M. et al. Spectroscopic and quantum chemical investigation of hexamethylenetetraminium 3, 5-dinitrobenzoate hemihydrate single crystals for optical limiting applications. J Mater Sci: Mater Electron 33, 22435–22447 (2022). https://doi.org/10.1007/s10854-022-09020-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09020-z

Navigation