Skip to main content
Log in

Raman spectroscopic investigation and thermoelectric studies of defect-induced Mg-doped delafossite thin film

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Here, we modified the band structure of P-type Mg-doped CuCrO2 thin films by defect-induced lattice compressive strain. A significant increase in p-type conductivity of 33.44 S cm−1 and enhanced power factor of 679.44 μW m−1 K−2 at 200 °C were observed for the film of thickness 211 nm. The increased strain from XRD calculations and phonon vibrations mode features of the grown film from Raman spectroscopic investigations, giving an insight to the thermal phonon mode lead to thermoelectric features of the material. Hall effect measurements substantiate the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also form part of an ongoing study

References

  1. N. Daichakomphu, A. Harnwunggmoung, N. Chanlek, R. Sakdanuphab, A. Sakulkalavek, Figure of merit improvement of delafossite CuAlO2 with the addition of Fe and graphene. J. Phys. Chem. Solids 134, 29–34 (2019)

    Article  CAS  Google Scholar 

  2. P.P. Murmu, J. Kennedy, S. Sidharth, S.V. Chong, J. Leveneur, J. Storey, S. Rubanov, G. Ramanath, Multifold improvement of thermoelectric power factor by tuning bismuth and antimony in nanostructured n-type bismuth antimony telluride thin films. Mater. Des. 163, 107549 (2019)

    Article  CAS  Google Scholar 

  3. J. Kennedy, P.P. Murmu, P. Kumar, G. Ramanath, Multifold enhancements in thermoelectric power factor in isovalent sulfur doped bismuth antimony telluride films. Mater. Res. Bull. 142, 111426 (2021)

    Article  CAS  Google Scholar 

  4. D.G. Cahill, H.E. Fischer, T. Klitsner, E. Swartz, R. Pohl, Thermal conductivity of thin films: measurements and understanding. J. Vac. Sci. Technol. A: Vac. Surf. Films 7(3), 1259–1266 (1989)

    Article  CAS  Google Scholar 

  5. J. Loureiro, J.R. Santos, A. Nogueira, F. Wyczisk, L. Divay, S. Reparaz, F. Alzina, C.M.S. Torres, J. Cuffe, F. Montemor et al., Nanostructured p-type Cr/V2O5 thin films with boosted thermoelectric properties. J. Mater. Chem. A 2(18), 6456–6462 (2014)

    Article  CAS  Google Scholar 

  6. D.O. Scanlon, G.W. Watson, Understanding the p-type defect chemistry of CuCrO2. J. Mater. Chem. 21(11), 3655–3663 (2011)

    Article  CAS  Google Scholar 

  7. J.F. Wager, Transparent electronics. Science 300(5623), 1245–1246 (2003)

    Article  CAS  Google Scholar 

  8. P.J. Sanam, M. Shah, P. Pradyumnan, Structure induced modification on thermoelectric and optical properties by mg doping in CuCrO2 nanocrystals. Solid State Commun. 353, 114855 (2022)

    Article  Google Scholar 

  9. E. Fortunato, D. Ginley, H. Hosono, D.C. Paine, Transparent conducting oxides for photovoltaics. MRS Bull. 32(3), 242–247 (2007)

    Article  CAS  Google Scholar 

  10. H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, H. Hosono, P-type electrical conduction in transparent thin films of CuAlO2. Nature 389(6654), 939–942 (1997)

    Article  CAS  Google Scholar 

  11. G. Hautier, A. Miglio, G. Ceder, G.-M. Rignanese, X. Gonze, Identification and design principles of low hole effective mass p-type transparent conducting oxides. Nat. Commun. 4(1), 1–7 (2013)

    Article  Google Scholar 

  12. Z. Wang, P.K. Nayak, J.A. Caraveo-Frescas, H.N. Alshareef, Recent developments in p-type oxide semiconductor materials and devices. Adv. Mater. 28(20), 3831–3892 (2016)

    Article  CAS  Google Scholar 

  13. H. Raebiger, S. Lany, A. Zunger, Origins of the p-type nature and cation deficiency in Cu2O and related materials. Phys. Rev. B 76(4), 045209 (2007)

    Article  Google Scholar 

  14. T.-W. Chiu, Y.-C. Yang, A.-C. Yeh, Y.-P. Wang, Y.-W. Feng, Antibacterial property of CuCrO2 thin films prepared by RF magnetron sputtering deposition. Vacuum 87, 174–177 (2013)

    Article  CAS  Google Scholar 

  15. J.-H. Lee, B.-O. Park, Transparent conducting Zno: Al, In and Sn thin films deposited by the sol-gel method. Thin Solid Films 426(1–2), 94–99 (2003)

    Article  CAS  Google Scholar 

  16. P. Zhang, Y. Shi, M. Chi, J.-N. Park, G.D. Stucky, E.W. McFarland, L. Gao, Mesoporous delafossite CuCrO2 and spinel CuCr2O4: synthesis and catalysis. Nanotechnology 24(34), 345704 (2013)

    Article  Google Scholar 

  17. S. Zheng, G. Jiang, J. Su, C. Zhu, The structural and electrical property of CuCr1−xNixO2 delafossite compounds. Mater. Lett. 60(29–30), 3871–3873 (2006)

    Article  CAS  Google Scholar 

  18. M. Han, J. Wang, Q. Deng, J. Wang, W. Li, P. Zhang, C. Li, Z. Hu, Effect of annealing temperature on structural, optoelectronic properties and interband transitions of CuCrO2 nanocrystalline films prepared by the sol-gel method. J. Alloys Compd. 647, 1028–1034 (2015)

    Article  CAS  Google Scholar 

  19. O. Aktas, K.D. Truong, T. Otani, G. Balakrishnan, M.J. Clouter, T. Kimura, G. Quirion, Raman scattering study of delafossite magnetoelectric multiferroic compounds: CuFeO2 and CuCrO2. J. Phys. Condens. Matter 24(3), 036003 (2011)

    Article  Google Scholar 

  20. F. Jlaiel, M. Amami, N. Boudjada, P. Strobel, A.B. Salah, Metal transition doping effect on the structural and physical properties of delafossite-type oxide CuCrO2. J. Alloys Compd. 509(29), 7784–7788 (2011)

    Article  CAS  Google Scholar 

  21. A.B. Garg, A. Mishra, K. Pandey, S.M. Sharma, Multiferroic CuCrO2 under high pressure: in situ X-ray diffraction and Raman spectroscopic studies. J. Appl. Phys. 116(13), 133514 (2014)

    Article  Google Scholar 

  22. J. Pellicer-Porres, D. Martinez-Garcia, A. Segura, P. Rodriguez-Hernandez, A. Munoz, J. Chervin, N. Garro, D. Kim, Pressure and temperature dependence of the lattice dynamics of CuAlO2 investigated by Raman scattering experiments and ab initio calculations. Phys. Rev. B 74(18), 184301 (2006)

    Article  Google Scholar 

  23. T. Lummen, I. Handayani, M. Donker, D. Fausti, G. Dhalenne, P. Berthet, A. Revcolevschi, P. Van Loosdrecht, Phonon and crystal field excitations in geometrically frustrated rare earth titanates. Phys. Rev. B 77(21), 214310 (2008)

    Article  Google Scholar 

  24. K. Fleischer, D. Caffrey, L. Farrell, E. Norton, D. Mullarkey, E. Arca, I.V. Shvets, Raman spectra of p-type transparent semiconducting Cr2O3: Mg. Thin Solid Films 594, 245–249 (2015)

    Article  CAS  Google Scholar 

  25. N. Dodiya, D. Varshney, Structural properties and Raman spectroscopy of rhombohedral La1−xNaxMnO3. J. Mol. Struct. 1031, 104–109 (2013)

    Article  CAS  Google Scholar 

  26. R.-S. Yu, C.-P. Tasi, Structure, composition and properties of p-type CuCrO2 thin films. Ceram. Int. 40(6), 8211–8217 (2014)

    Article  CAS  Google Scholar 

  27. H. Xiao, L. Xu, R. Wang, C. Yang, Interstitial copper defect induced reconstruction of a new “CuO4’’ quadrilateral in CaCu3Ti4O12: a first-principles study. Phys. B: Condens. Matter 520, 123–127 (2017)

    Article  CAS  Google Scholar 

  28. H. Berger, W. Kahle, G. Jäniche, Thickness dependence of conductivity due to the polycrystalline structure in evaporated cds thin films. Phys. Status Solidi 28(2), K97–K100 (1968)

    Article  CAS  Google Scholar 

  29. E. Chikoidze, M. Boshta, M. Gomaa, T. Tchelidze, D. Daraselia, D. Japaridze, A. Shengelaya, Y. Dumont, M. Neumann-Spallart, Control of p-type conduction in mg doped monophase CuCrO2 thin layers. J. Phys. D: Appl. Phys. 49(20), 205107 (2016)

    Article  Google Scholar 

  30. A. Barnabé, Y. Thimont, M. Lalanne, L. Presmanes, P. Tailhades, p-type conducting transparent characteristics of delafossite mg-doped CuCrO2 thin films prepared by rf-sputtering. J. Mater. Chem. C 3(23), 6012–6024 (2015)

    Article  Google Scholar 

  31. C. Jeong, R. Kim, M. Luisier, S. Datta, M. Lundstrom, On Landauer versus Boltzmann and full band versus effective mass evaluation of thermoelectric transport coefficients. J. Appl. Phys. 107(2), 023707 (2010)

    Article  Google Scholar 

  32. R. Kim, S. Datta, M.S. Lundstrom, Influence of dimensionality on thermoelectric device performance. J. Appl. Phys. 105(3), 034506 (2009)

    Article  Google Scholar 

  33. N. Jena, A. De Sarkar et al., Compressive strain induced enhancement in thermoelectric-power-factor in monolayer MoS2 nanosheet. J. Phys. Condens. Matter 29(22), 225501 (2017)

    Article  Google Scholar 

  34. H. Alam, S. Ramakrishna, A review on the enhancement of figure of merit from bulk to nano-thermoelectric materials. Nano Energy 2(2), 190–212 (2013)

    Article  CAS  Google Scholar 

  35. S.M. Sze, Y. Li, K.K. Ng, Physics of Semiconductor Devices (Wiley, New York, 2021)

    Google Scholar 

  36. J. Ma, F. Meng, J. He, Y. Jia, W. Li, Strain-induced ultrahigh electron mobility and thermoelectric figure of merit in monolayer \(\alpha\)-te. ACS Appl. Mater. Interfaces 12(39), 43901–43910 (2020)

    Article  CAS  Google Scholar 

  37. P.P. Murmu, V. Karthik, L. Zihang, V. Jovic, M. Takao, W.L. Yang, K.E. Smith, J.V. Kennedy, Influence of carrier density and energy barrier scattering on a high Seebeck coefficient and power factor in transparent thermoelectric copper iodide. ACS Appl. Energy Mater. 3(10), 10037–10044 (2020)

    Article  CAS  Google Scholar 

  38. T. Tripathi, C. Yadav, M. Karppinen, Transparent ferrimagnetic semiconducting CuCr2O4 thin films by atomic layer deposition. APL Mater. 4(4), 046106 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank UGC-SAP (Government of India) and FIST (DST, Government of India) for providing the research facilities and DST SERB (Government of India) for providing the major research Project SB/EMEQ-002/2013 in the Department of Physics, University of Calicut. The Central Sophisticated Instrumentation Facility (CSIF), University of Calicut for characterization facilities, and Department of physics, Farook College, Kozhikode provided the facility for the synthesis part.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: [PKJS, PPP]; Methodology: [PKJS]; Formal analysis and investigation: [PKJS]; Writing—original draft preparation: [PKJS]; Writing—review and editing: [PKJS, MS, PPP]; Resources: [PKJS, MS]; Supervision: [PPP]

Corresponding author

Correspondence to P. P. Pradyumnan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanam, P.K.J., Shah, M. & Pradyumnan, P.P. Raman spectroscopic investigation and thermoelectric studies of defect-induced Mg-doped delafossite thin film. J Mater Sci: Mater Electron 33, 22346–22360 (2022). https://doi.org/10.1007/s10854-022-09013-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09013-y

Navigation