Skip to main content

Advertisement

Log in

Homogeneous nanocube (Fe, Ni) S2 electrode material from Fe–Ni PBA for high-performance hybrid supercapacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Prussian blue analogs (PBAs) are multifunctional precursors for the synthesis of a series of transition metal nanomaterials. In this study, high-performance supercapacitor hybrid electrode materials [(Fe, Ni) S2] are obtained by a facile hydrothermal sulfidation method, where the Fe–Ni PBA is introduced as the precursor. The nanocube structure which is similar to the Fe–Ni PBA precursor is remained and delivers the structure with a large number of cracks, resulting in a larger specific surface area and good conductivity. The (Fe, Ni) S2 electrode material possesses a high specific capacitance of 1249.1 F g−1 at the current density of 1 A g−1, good rate capability (915.31 F g−1 at 20 A g−1), and the excellent cyclic stability (retention rate of 91.6%) after 5000 cycles. The two-electrode system condition test shows that the energy density of ASD reached 39.97 Wh kg−1 when the power density is 0.85 kW kg−1 including the material is a potential supercapacitor electrode material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All of the data used to support the findings of this study are included within the article.

References

  1. Z.P. Ma, G.J. Shao, Y.Q. Fan, M.Y. Feng, D.J. Shen, H.J. Wang, ACS Sustain. Chem. Eng. 5, 4856 (2017). https://doi.org/10.1021/acssuschemeng.7b00279

    Article  CAS  Google Scholar 

  2. Y. Ouyang, X.F. Xia, H.T. Ye et al., ACS Appl. Mater. Interfaces 10, 3549 (2018). https://doi.org/10.1021/acsami.7b16021

    Article  CAS  Google Scholar 

  3. F.F. Cao, M.Y. Gan, L. Ma et al., Synth. Met. 234, 154 (2017). https://doi.org/10.1016/j.synthmet.2017.11.001

    Article  CAS  Google Scholar 

  4. X.L. Zhang, L. Ma, M.Y. Gan et al., J. Power Sources 340, 22 (2017). https://doi.org/10.1016/j.jpowsour.2016.11.058

    Article  CAS  Google Scholar 

  5. Y. Zhou, L. Ma, M.Y. Gan et al., Appl. Surf. Sci. 444, 1 (2018). https://doi.org/10.1016/j.apsusc.2018.03.049

    Article  CAS  Google Scholar 

  6. M. Jin, S.Y. Lu, L. Ma et al., J. Power Sources 341, 294 (2017). https://doi.org/10.1016/j.jpowsour.2016.12.013

    Article  CAS  Google Scholar 

  7. C. Zhang, C.L. Lei, C. Cen et al., Electrochim. Acta 260, 814 (2018). https://doi.org/10.1016/j.electacta.2017.12.044

    Article  CAS  Google Scholar 

  8. K.B. Xu, W.Y. Li, Q. Liu et al., J. Mater. Chem. A 2, 4795 (2014). https://doi.org/10.1039/c3ta14647b

    Article  CAS  Google Scholar 

  9. L. Abbasi, M. Arvand, Appl. Surf. Sci. 445, 272 (2018). https://doi.org/10.1016/j.apsusc.2018.03.193

    Article  CAS  Google Scholar 

  10. M.J. Xie, Z.C. Xu, S.Y. Duan et al., Nano Res. 11, 216 (2018). https://doi.org/10.1007/s12274-017-1621-4

    Article  CAS  Google Scholar 

  11. F.X. Bao, Z.Q. Zhang, W. Guo, X.Y. Liu, Electrochim. Acta 157, 31 (2015). https://doi.org/10.1016/j.electacta.2015.01.060

    Article  CAS  Google Scholar 

  12. S.N. Fu, L. Ma, M.Y. Gan et al., J. Mater. Sci. Mater. Electron. 28, 3621 (2017). https://doi.org/10.1007/s10854-016-5964-5

    Article  CAS  Google Scholar 

  13. W.H. Zuo, R.Z. Li, C. Zhou, Y.Y. Li, J.L. Xia, J.P. Liu, Adv. Sci. 4, 21 (2017). https://doi.org/10.1002/advs.201600539

    Article  CAS  Google Scholar 

  14. X.L. Zhang, R.L. Liu, C.Y. Tao, S.S. Wu, F. Huang, H.W. Wang, J. Alloys Compd. 813, 7 (2020). https://doi.org/10.1016/j.jallcom.2019.152219

    Article  CAS  Google Scholar 

  15. C.H. Tang, X.S. Yin, H. Gong, ACS Appl. Mater. Interfaces 5, 10574 (2013). https://doi.org/10.1021/am402436q

    Article  CAS  Google Scholar 

  16. J. Zhang, F. Liu, J.P. Cheng, X.B. Zhang, ACS Appl. Mater. Interfaces 7, 17630 (2015). https://doi.org/10.1021/acsami.5b04463

    Article  CAS  Google Scholar 

  17. Y. Wang, Z.L. Yin, Z.X. Wang et al., Electrochim. Acta 293, 40 (2019). https://doi.org/10.1016/j.electacta.2018.10.025

    Article  CAS  Google Scholar 

  18. X.H. Rui, H.T. Tan, Q.Y. Yan, Nanoscale 6, 9889 (2014). https://doi.org/10.1039/c4nr03057e

    Article  CAS  Google Scholar 

  19. B. You, Y.J. Sun, Adv. Energy Mater. 6, 7 (2016). https://doi.org/10.1002/aenm.201502333

    Article  CAS  Google Scholar 

  20. A.M. Elshahawy, X. Li, H. Zhang et al., J. Mater. Chem. A 5, 7494 (2017). https://doi.org/10.1039/c7ta00943g

    Article  CAS  Google Scholar 

  21. H.B. Ren, C.P. Gu, J.J. Zhao, S.W. Joo, J.R. Huang, Appl. Surf. Sci. 473, 918 (2019). https://doi.org/10.1016/j.apsusc.2018.12.257

    Article  CAS  Google Scholar 

  22. J.K. Zhu, D.M. Song, T. Pu et al., Chem. Eng. J. 336, 679 (2018). https://doi.org/10.1016/j.cej.2017.12.035

    Article  CAS  Google Scholar 

  23. Q. Gao, J.X. Wang, J.F. Wang, J. Alloys Compd. 789, 193 (2019). https://doi.org/10.1016/j.jallcom.2019.03.041

    Article  CAS  Google Scholar 

  24. D.W. Chu, F.B. Li, X.M. Song et al., J. Colloid Interface Sci. 568, 130 (2020). https://doi.org/10.1016/j.jcis.2020.02.012

    Article  CAS  Google Scholar 

  25. M. Wei, C. Wang, Y.B. Yao et al., Chem. Eng. J. 355, 891 (2019). https://doi.org/10.1016/j.cej.2018.08.223

    Article  CAS  Google Scholar 

  26. C. Miao, X. Xiao, Y. Gong et al., ACS Appl. Mater. Interfaces 12, 9365 (2020). https://doi.org/10.1021/acsami.9b22606

    Article  CAS  Google Scholar 

  27. W. Kong, C.C. Lu, W. Zhang, J. Pu, Z.H. Wang, J. Mater. Chem. A 3, 12452 (2015). https://doi.org/10.1039/c5ta02432c

    Article  CAS  Google Scholar 

  28. Z.Y. Li, G.R. Chen, J. Deng et al., ACS Sustain. Chem. Eng. (2019). https://doi.org/10.1021/acssuschemeng.9b02849

    Article  Google Scholar 

  29. L. Zhao, G. Chen, Y. Weng et al., Chem. Eng. J. 401, 126138 (2020). https://doi.org/10.1016/j.cej.2020.126138

    Article  CAS  Google Scholar 

  30. Q. Hu, X.W. Huang, Z.Y. Wang et al., Small 16, 9 (2020). https://doi.org/10.1002/smll.202002210

    Article  CAS  Google Scholar 

  31. C.J. Xuan, K.D. Xia, W. Lei et al., Electrochim. Acta 291, 64 (2018). https://doi.org/10.1016/j.electacta.2018.08.106

    Article  CAS  Google Scholar 

  32. S. Cheng, C. Shen, H. Zheng, F.Q. Liu, A.M. Li, Appl. Catal. B 269, 10 (2020). https://doi.org/10.1016/j.apcatb.2020.118785

    Article  CAS  Google Scholar 

  33. X.J. Wei, W.P. Hu, H.R. Peng et al., Small 15, 10 (2019). https://doi.org/10.1002/smll.201902280

    Article  CAS  Google Scholar 

  34. X.L. Zhang, R.L. Liuz, J. Electrochem. Soc. 166, A2636 (2019). https://doi.org/10.1149/2.1221912jes

    Article  CAS  Google Scholar 

  35. N.I. Chandrasekaran, M. Kumari, H. Muthukumar, M. Matheswaran, ACS Sustain. Chem. Eng. 6, 1009 (2018). https://doi.org/10.1021/acssuschemeng.7b03339

    Article  CAS  Google Scholar 

  36. Y. Tan, W.D. Xue, Y. Zhang, D.X. He, W.J. Wang, R. Zhao, J. Alloys Compd. 806, 1068 (2019). https://doi.org/10.1016/j.jallcom.2019.07.222

    Article  CAS  Google Scholar 

  37. Q. Zong, Y.L. Zhu, Q.Q. Wang et al., Chem. Eng. J. (2020). https://doi.org/10.1016/j.cej.2019.123664

    Article  Google Scholar 

  38. C.V. Reddy, R. Koutavarapu, K.R. Reddy, N.P. Shetti, T.M. Aminabhavi, J. Shim, J. Environ. Manag. (2020). https://doi.org/10.1016/j.jenvman.2020.110677

    Article  Google Scholar 

  39. L. Yang, Z. Wang, Y. Ji, J. Wang, G. Xue, Macromolecules 47, 1749–1756 (2014). https://doi.org/10.1021/ma402364r

    Article  CAS  Google Scholar 

  40. K.N. Hui, K.S. Hui, Z.K. Tang, V.V. Jadhav, Q.X. Xia, J. Power Sources 330, 195 (2016). https://doi.org/10.1016/j.jpowsour.2016.08.116

    Article  CAS  Google Scholar 

  41. L. Xie, Y. Liu, H.Y. Bai et al., J. Colloid Interface Sci. 531, 64 (2018). https://doi.org/10.1016/j.jcis.2018.07.049

    Article  CAS  Google Scholar 

  42. D. Guo, Y.Z. Luo, X.Z. Yu, Q.H. Li, T.H. Wang, Nano Energy 8, 174 (2014). https://doi.org/10.1016/j.nanoen.2014.06.002

    Article  CAS  Google Scholar 

  43. S.T. Senthilkumar, R.K. Selvan, Y.S. Lee, J.S. Melo, J. Mater. Chem. A 1, 1086 (2013). https://doi.org/10.1039/c2ta00210h

    Article  CAS  Google Scholar 

  44. H.R. Naderi, M.R. Ganjali, A.S. Dezfuli, P. Norouzi, RSC Adv. 6, 51211 (2016). https://doi.org/10.1039/c6ra02943d

    Article  CAS  Google Scholar 

  45. H.R. Naderi, P. Norouzi, M.R. Ganjali, Appl. Surf. Sci. 366, 552 (2016). https://doi.org/10.1016/j.apsusc.2016.01.058

    Article  CAS  Google Scholar 

  46. A.S. Dezfuli, M.R. Ganjali, H.R. Naderi, Appl. Surf. Sci. 402, 245 (2017). https://doi.org/10.1016/j.apsusc.2017.01.021

    Article  CAS  Google Scholar 

  47. F.F. Wang, T. Wang, S.G. Sun, Y.Q. Xu, R.J. Yu, H.J. Li, Sci. Rep. 8, 10 (2018). https://doi.org/10.1038/s41598-018-27171-0

    Article  CAS  Google Scholar 

  48. M. Naseri, M. Moradi, S. Hajati, J.P. Espinos, M.A. Kiani, J. Mater. Sci. Mater. Electron. 30, 4499–4510 (2019). https://doi.org/10.1007/s10854-019-00738-x

    Article  CAS  Google Scholar 

  49. S. Hussain, T. Liu, N. Aslam, Y. Zhang, S. Zhao, Mater. Lett. 189, 21 (2017). https://doi.org/10.1016/j.matlet.2016.11.056

    Article  CAS  Google Scholar 

  50. F.G. Chen, L.Y. Zhang, H.Q. Wu, C. Guan, Y. Yang, J. Qiu, P.B. Lyu, M. Li, Nanotechnology 30, 12 (2019). https://doi.org/10.1088/1361-6528/ab178c

    Article  CAS  Google Scholar 

  51. H.Z. Wan, J.J. Jiang, J.W. Yu et al., CrystEngComm 15, 7649 (2013). https://doi.org/10.1039/c3ce41243a

    Article  CAS  Google Scholar 

  52. G.X. Luo, K.S. Teh, Y. Xia et al., J. Alloys Compd. 767, 1126–1132 (2018). https://doi.org/10.1016/j.jallcom.2018.07.188

    Article  CAS  Google Scholar 

  53. S. Zheng, Q. Li, H. Xue, H. Pang, Q. Xu, J. Natl Sci. Rev. 7, 305 (2019). https://doi.org/10.1093/nsr/nwz137%

    Article  Google Scholar 

  54. Y. Zhong, X. Cao, L. Ying et al., J. Colloid Interface Sci. 561, 265 (2020). https://doi.org/10.1016/j.jcis.2019.10.023

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the Basic Research Program of Education Committee of Chongqing Province, China (No. KJQN201903205) and the National Natural Science Foundation of China (Grant No. 21676034).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

TL contributed to conceptualization, methodology, validation, investigation, software, writing of the original draft, writing, reviewing, and editing of the manuscript, and visualization. SF contributed to writing, reviewing, and editing of the manuscript, software, formal analysis, funding acquisition, and visualization. LM contributed to resources collection, supervision, funding acquisition, validation, investigation, formal analysis, and writing, reviewing, and editing of the manuscript. YY contributed to resources collection, supervision, project administration, funding acquisition, and validation. TW contributed to resources collection, investigation, and writing, reviewing, and editing of the manuscript. SW contributed to resources collection, investigation, and writing, reviewing, and editing of the manuscript. QF contributed to resources collection, investigation, and writing, reviewing, and editing of the manuscript. FX: contributed to resources collection and funding acquisition. WZ contributed to resources collection.

Corresponding authors

Correspondence to Shenna Fu or Li Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Ethics Committee approval was obtained from the Institutional Ethics Committee of Chongqing University to the commencement of the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Fu, S., Ma, L. et al. Homogeneous nanocube (Fe, Ni) S2 electrode material from Fe–Ni PBA for high-performance hybrid supercapacitors. J Mater Sci: Mater Electron 33, 22319–22331 (2022). https://doi.org/10.1007/s10854-022-09011-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09011-0

Navigation