Skip to main content
Log in

The enhanced piezoelectricity of 0.7BiFeO3–0.3BaTiO3 by optimizing charge defects through annealing

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

High-performance 0.7Bi1.02FeO3–0.3BaTiO3 ceramics are prepared by traditional solid-state method with annealing. The effect of annealing temperature (TA) on the piezoelectric properties of ceramics are revealed by studying the crystal structures, ferroelectric properties, and electrical properties of the as-sintered ceramic and ceramics annealed at 600, 700, 800, and 900 °C. Through the analysis, we found that TA has little influence on the morphology and crystal structure of ceramics, all ceramics are two-phase (R-PC) coexistence structures. But TA relates to the concentration of charge defects. When annealing at 800 °C, the charge defects in the ceramic are the least. Therefore the best performance (d33 = 202 \(\pm\) 3 pC/N, TC = 496 °C) ceramic is obtained. Our experiments demonstrate that the charge defects induced by annealing temperature are very important to the piezoelectricity of BFO–BTO ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. T. Zheng, J.G. Wu, D.Q. Xiao, J.G. Zhu, Prog. Mater. Sci. 98, 552 (2018)

    Article  CAS  Google Scholar 

  2. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nature 432, 7013 (2004)

    Article  Google Scholar 

  3. P. Li, J.W. Zhai, B. Shen, S.J. Zhang, X.L. Li, F.Y. Zhu, X.M. Zhang, Adv. Mater. 30, 8 (2018)

    Google Scholar 

  4. H. Tao, H.J. Wu, Y. Liu, Y. Zhang, J.G. Wu, F. Li, X. Lyu, C.L. Zhao, D.Q. Xiao, J.G. Zhu, S.J. Pennycook, J. Am. Chem. Soc. 141, 13987 (2019)

    Article  CAS  Google Scholar 

  5. J. Rödel, J.F. Li, MRS Bull. 43, 8 (2018)

    Article  Google Scholar 

  6. W.W. Gao, J. Lv, X.J. Lou, J. Am. Ceram. Soc. 101, 3383 (2018)

    Article  CAS  Google Scholar 

  7. J. Lv, X.J. Lou, J.G. Wu, J. Mater. Chem. C 4, 6140 (2016)

    Article  CAS  Google Scholar 

  8. F. Akram, R.A. Malik, T.K. Song, S. Lee, M.H. Kim, J. Eur. Ceram. Soc. 39, 2304 (2019)

    Article  CAS  Google Scholar 

  9. S. Cheng, B.P. Zhang, L. Zhao, K.K. Wang, J. Mater. Chem. C. 6, 3982 (2018)

    Article  CAS  Google Scholar 

  10. L.F. Zhu, B.P. Zhang, J.Q. Duan, B.W. Xun, N. Wang, Y.C. Tang, G.L. Zhao, J. Eur. Ceram. Soc. 38, 63 (2018)

    Google Scholar 

  11. S. Cheng, L. Zhao, B.P. Zhang, K.K. Wang, Ceram. Int. 45, 10438 (2019)

    Article  CAS  Google Scholar 

  12. B.W. Xun, N. Wang, B.P. Zhang, X.Y. Chen, K. Liang, Ceram. Int. 45, 24382 (2019)

    Article  CAS  Google Scholar 

  13. H. Nam, S. Kim, T. Aizawa, I. Fujii, S. Ueno, S. Wada, Ceram. Int. 44, S199 (2018)

    Article  CAS  Google Scholar 

  14. M.H. Lee, D.J. Kim, J.S. Park, S.W. Kim, T.K. Song, M.H. Kim, W.J. Kim, D. Do, I.K. Jeong, Adv. Mater. 27, 6976 (2016)

    Article  Google Scholar 

  15. N. Jiang, M. Tian, L. Luo, Q. Zheng, D. Shi, K.H. Lam, C. Xu, D. Lin, J. Korean Inst. Electr. Electron. Mater. Eng. 45, 291 (2016)

    CAS  Google Scholar 

  16. C. Zhou, H. Yang, Q. Zhou, Z. Cen, W. Li, C. Yuan, H. Wang, Ceram. Int. 39, 4307 (2013)

    Article  CAS  Google Scholar 

  17. H. Yang, C. Zhou, X. Liu, Q. Zhou, G. Chen, W. Li, H. Wang, J. Eur. Ceram. Soc. 33, 1177 (2013)

    Article  CAS  Google Scholar 

  18. X.H. Liu, Z. Xu, S.B. Qu, W.X. Yong, C.J. Li, Chin. Sci. Bull. 52, 2747 (2007)

    Article  CAS  Google Scholar 

  19. Q. Fan, C. Zhou, W. Zeng, L. Cao, C. Yuan, G. Rao, X. Li, J. Electroceram. 36, 1 (2016)

    Article  CAS  Google Scholar 

  20. Z. Cen, C. Zhou, J. Cheng, X. Zhou, W. Li, C. Yan, S. Feng, Y. Liu, D. Lao, J. Alloys Compd. 567, 110 (2013)

    Article  CAS  Google Scholar 

  21. F. Akram, A. Hussain, R.A. Malik, T.K. Song, W.J. Kim, M.H. Kim, Interceram. Int. Ceram. Rev. 43, S209 (2017)

    Article  CAS  Google Scholar 

  22. J. Guo, H.W. Cheng, B.B. Tong, J.Y. Lin, H.B. Liu, J.R. Cheng, J.G. Chen, J. Am. Ceram. Soc. 105, 862 (2022)

    Article  CAS  Google Scholar 

  23. J. Wang, C. Zhou, Q. Li, L. Yang, J. Xu, G. Chen, C. Yuan, G. Rao, J. Alloys Compd. 748, 758 (2018)

    Article  CAS  Google Scholar 

  24. F. Luo, Z.M. Li, J.Y. Chen, Y. Yan, D.Y. Zhang, M.L. Zhang, Y. Hao, J. Eur. Ceram. Soc. 42, 954 (2022)

    Article  CAS  Google Scholar 

  25. Z.L. Wang, G. Huangfu, H.Y. Xiao, Y.P. Guo, J. Am. Ceram. Soc. 105, 317 (2022)

    Article  CAS  Google Scholar 

  26. L. Yang, C. Chen, X.P. Jiang, X.K. Huang, X. Nie, S.S. Chang, Ceram. Int. (2022)

  27. Y. Yao, C. Zhou, D. Lv, D. Wang, X. Ren, EPL 98, 27008 (2012)

    Article  Google Scholar 

  28. W.F. Liu, X.B. Ren, Phys. Rev. Lett. 103, 257602 (2009)

    Article  Google Scholar 

  29. J. Moulder, J. Chastain, R. King, Chem. Phys. Lett. 220, 7 (1992)

    Google Scholar 

  30. S.C. Sekhar, G. Nagaraju, J.S. Yu, Nano Energy 36, 58 (2017)

    Article  CAS  Google Scholar 

  31. W.B. Hu, Y. Liu, R.L. Withers, T.J. Frankcombe, L. Norén, A. Snashall, M. Kitchin, P. Smith, B. Gong, H. Chen, J. Schiemer, F. Brink, J. Wong-Leung, Nat. Mater. 12, 821 (2013)

    Article  CAS  Google Scholar 

  32. O. Raymond, R. Font, N. Suarez-Almodovar, J. Portelles, J.M. Siqueiros, J. Appl. Phys. 97, 915 (2005)

    Google Scholar 

  33. F. Yang, A.R. West, D.C. Sinclair, Phys. Chem. Chem. Phys. 22, 20941 (2020)

    Article  CAS  Google Scholar 

  34. M. Li, M.J. Pietrowski, R.A. De Souza, H. Zhang, I.M. Reaney, S.N. Cook, J.A. Kilner, D.C. Sinclair, Nat. Mater. 13, 31 (2014)

    Article  CAS  Google Scholar 

  35. P.R. Mandal, T.K. Nath, J. Alloys Compd. 628, 379 (2015)

    Article  CAS  Google Scholar 

  36. F.Z. Yao, K. Wang, W. Jo, J.S. Lee, J.F. Li, J. Appl. Phys. 116, 114102 (2014)

    Article  Google Scholar 

  37. L. Zhang, W. Chen, X. Ren, Appl. Phys. Lett. 85, 5658 (2004)

    Article  CAS  Google Scholar 

  38. Z. Dai, Y. Akishige, J. Phys. D: Appl. Phys. 43, 445403 (2010)

    Article  Google Scholar 

  39. F. Xia, X. Yao, J. Appl. Phys. 92, 2709 (2002)

    Article  CAS  Google Scholar 

  40. H.Q. Fan, G.T. Park, J.J. Choi, H.E. Kim, Appl. Phys. Lett. 79, 1658 (2001)

    Article  CAS  Google Scholar 

  41. N. Masó, A. West, Chem. Mater. 24, 2127 (2012)

    Article  Google Scholar 

  42. J. Dho, X. Qi, H. Kim, J. MacManus-Driscoll, M. Blamire, Adv. Mater. 18, 1445 (2006)

    Article  CAS  Google Scholar 

  43. T.R. Paudel, S.S. Jaswal, E.Y. Tsymbal, Phys. Rev. B. 85, 104409 (2012)

    Article  Google Scholar 

  44. S. Cheng, B.P. Zhang, L. Zhao, K.K. Wang, J. Am. Ceram. Soc. 102, 7355 (2019)

    Article  CAS  Google Scholar 

  45. K. Tong, C. Zhou, Q. Li, J. Wang, L. Yang, J. Xu, G. Chen, C. Yuan, G. Rao, J. Eur. Ceram. Soc. 38, 1356 (2017)

    Article  Google Scholar 

  46. M.A. Rafiq, M.N. Rafiq, K.V. Saravanan, Ceram. Int. 41, 11436 (2015)

    Article  CAS  Google Scholar 

  47. A. Peláiz-Barranco, J.D.S. Guerra, R. López-Noda, E.B. Araujo, J. Phys. D: Appl. Phys. 41, 215503 (2008)

    Article  Google Scholar 

  48. M.A. Rafiq, M.E. Costa, A. Tkach, P.M. Vilarinho, Cryst. Growth Des. 15, 1289 (2015)

    Article  CAS  Google Scholar 

  49. B.C.H. Steele, Solid State Ion. 37, 95 (1989)

    Article  Google Scholar 

  50. M.J. Haun, E. Furman, S.J. Jang, L.E. Cross, Ferroelectrics 99, 13 (1989)

    Article  CAS  Google Scholar 

  51. C.C. Tsai, W.H. Chao, S.Y. Chu, C.S. Hong, C.M. Weng, H.H. Su, Aip Adv. 6, 125024 (2016)

    Article  Google Scholar 

  52. T. Zheng, Y. Ding, J. Wu, RSC Adv. 6, 90831 (2016)

    Article  CAS  Google Scholar 

  53. D. Wang, A. Khesro, S. Murakami, A. Feteira, Q. Zhao, I.M. Reaney, J. Eur. Ceram. Soc. 37, 1857 (2017)

    Article  Google Scholar 

  54. L.F. Zhu, B.P. Zhang, S. Li, G.L. Zhao, J. Alloys Compd. 727, 382 (2017)

    Article  CAS  Google Scholar 

  55. Z. Li, W. Peng, C. Zhou, Q. Li, L. Yang, J. Xu, G. Chen, C. Yuan, G. Rao, Ceram. Int. 44, 14439 (2018)

    Article  CAS  Google Scholar 

  56. B.W. Xun, A.Z. Song, J.R. Yu, Y. Yin, J.F. Li, B.P. Zhang, ACS Appl. Mater. Int. 13, 4192 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 9196320), Natural Science Foundation of Gansu Province (Grant No. 20JR5RA300), and Audiowell Sensor Technology (Guangdong) Co., Ltd. (Grant No. 505000-071100116). The all authors are grateful to the Key Laboratory for Magnetism and Magnetic Materials of MOE. This work was supported by Lanzhou University.

Funding

The funded was provided by National Natural Science Foundation of China (Grant No. 9196320(, Natural Science Foundation of Gansu Province (Grant No. 20JR5RA300), Audiowell Sensor Technology (Guangdong) Co., Ltd. (Grant No. 505000-071100116).

Author information

Authors and Affiliations

Authors

Contributions

In this work, MG provided the experimental platform, and gave some significant modification suggestions for the article. TY completed the experiment in this paper and wrote this article. SJ provided some effective suggestions for writing articles and drawing charts. YQ helped complete the SEM test. FL provided some help in sample preparation. And BY offered some suggestions on English grammar.

Corresponding author

Correspondence to Meizhen Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1015 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, T., Jiang, S., Qiao, Y. et al. The enhanced piezoelectricity of 0.7BiFeO3–0.3BaTiO3 by optimizing charge defects through annealing. J Mater Sci: Mater Electron 33, 24038–24047 (2022). https://doi.org/10.1007/s10854-022-09009-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09009-8

Navigation