Skip to main content
Log in

Investigation on the microstructure, phase formation and properties of aluminium alloy coatings by stud spraying

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study aims to investigate a novel spraying technology. The spraying technology is named stud spraying since it has been developed by improving the traditional stud-welding process. Al–Cu coatings have been prepared on the surface of copper plates by using aluminium studs with bosses, and the thickness of the coating centre can be 15–30 μm under the height of stud boss (0.2 mm). The microstructure, phase structure and composition of the coating are characterized. The results show that a large number of Al–Cu intermetallic compounds and a few oxides are present in the coating. Numerous growth crystals are present at the metal interface between the coatings and the copper plate. The crystal morphology of the interface metal is growing from the copper plate to the coating metal which has also been enhanced the coating interface. The stud-coating process is a rapidly cooling solidification process that a variety of intermetallic compounds including θ phase (Al2Cu), η2 phase (Al48Cu52), ζ2 phase (Al9Cu11) and γ2 phase (Al4Cu9) are present within the layers. In addition, multiphase intermetallic compounds enhanced the surface microhardness of the coating with its value increasing from 85 to 222 HV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The authors declare that data supporting the findings of this study are available within the article.

References

  1. J. Dong, G.C. Xu, H.Y. Yu, G.Q. Fan, L.B. Wei, X.P. Gu, Int. J. Adv. Manuf. Technol. 100, 663 (2019)

    Article  Google Scholar 

  2. D.K. Zhang, H.Y. Yin, W. Bai, K.H. Wang, J. Manuf. Process 82, 138 (2022)

    Article  Google Scholar 

  3. Q. Zhang, B.Z. Zhang, Y. Luo, G. Yang, H.X. Zheng, J. Manuf. Sci. Eng. 144, 1 (2021)

    Google Scholar 

  4. K. Buranapunviwat, K. Sojiphan, Mater. Today Proc. 47, 3565 (2021)

    Article  CAS  Google Scholar 

  5. H.S. Oh, J.H. Lee, C.D. Yoo, Sci. Technol. Weld. Join. 12, 274 (2007)

    Article  Google Scholar 

  6. J. Zhou, Z.P. Chen, Y.L. Chen, C.M. Song, J.Y. Li, M. Zhong, J. Build. Eng. 48, 103879 (2022)

    Article  Google Scholar 

  7. Q.L. Sun, X. Nie, M.D. Denavit, J.S. Fan, W. Liu, J. Constr. Steel Res. 157, 121 (2019)

    Article  Google Scholar 

  8. M. Serrano-López, C. Colina, Y.C. Wang, M. Lozano, I. García, F.L. Gayarre, J. Constr. Steel Res. 182, 106651 (2020)

    Article  Google Scholar 

  9. D. Kruszewski, K. Wille, A.E. Zaghi, Eng. Struct. 173, 429 (2018)

    Article  Google Scholar 

  10. T. Molkens, J. Dobrićc, B. Rossi, Eng. Struct. 197, 109412 (2019)

    Article  Google Scholar 

  11. D.K. Zhang, X.S. Qian, X.P. Li, S.Y. He, K.H. Wang, J. Adhes. Sci. Technol. 1, 1–12 (2021)

    CAS  Google Scholar 

  12. I. Samardzic, I. Kladaric, S. Klaric, Metalurgija 48, 181 (2009)

    CAS  Google Scholar 

  13. H. Ochia, K. Morikawab, T. Moritanic, Y. Issikid, G. Kawaie, Strength Fract. Complex. 8, 145 (2014)

    Article  Google Scholar 

  14. R.J. Hynes, N.P. Nagaraj, A.J. Sujana, Arab. J. Sci. Eng. 39, 5017 (2014)

    Article  Google Scholar 

  15. F.C. Wang, X.G. Peng, Y. Sun, J. Chen, J.Q. Ju, Y. Jin, C.Y. Zhang, J.F. Kong, J. Yang, Q.M. Chen, X.M. Dou, J. Mater. Sci.: Mater. Electron. 32, 7153 (2021)

    CAS  Google Scholar 

  16. H.L. Tian, C.L. Wang, M.Q. Guo, Z.H. Tang, S.C. Wei, B.S. Xu, J. Alloys Compd. 769, 998 (2018)

    Article  CAS  Google Scholar 

  17. H.T. Fujii, H. Endo, Y.S. Sato, H. Kokawa, Mater. Charact. 139, 233 (2018)

    Article  CAS  Google Scholar 

  18. R. Lapovok, H.P. Ng, D. Tomus, Y. Estrin, Scripta Mater. 66, 1081 (2012)

    Article  CAS  Google Scholar 

  19. K. Liu, H.C. Yu, X. Lia, S.J. Wu, J. Alloys Compd. 874, 159831 (2021)

    Article  CAS  Google Scholar 

  20. A.P. Araujo, M. Leandro, S.K. Claudio, Mater. Sci. Technol. 36, 1205 (2020)

    Article  Google Scholar 

  21. K. Spencer, D.M. Fabijanic, M.X. Zhang, Surf. Coat. Tech. 204, 336 (2009)

    Article  CAS  Google Scholar 

  22. G. Ji, H. Liu, G.J. Yang, C.X. Li, X.T. Luo, G.Y. He, L. Zhou, Surf. Coat. Tech. 421, 127352 (2021)

    Article  CAS  Google Scholar 

  23. S. Yin, M. Hassani, Q.G. Xie, R. Lupoi, Scripta Mater. 194, 113 (2021)

    Article  Google Scholar 

  24. W. Michael, Mater. Sci. Technol. 34, 2057 (2018)

    Article  Google Scholar 

  25. A.M. Zhukeshov, K. Fermakhan, A.T. Gabdullina, B.M. Useinov, Mater. Lett. 298, 130028 (2021)

    Article  CAS  Google Scholar 

  26. O. Mypati, S. Sahu, S.K. Pal, P. Srirangam, Mater. Chem. Phys. 287, 126373 (2022)

    Article  CAS  Google Scholar 

  27. S.H.S. Shin, M.D. Leon, J Mater Process Tech. 241, 141 (2017)

    Article  CAS  Google Scholar 

  28. S. Ramasamy, JOM 54, 44 (2002)

    Article  CAS  Google Scholar 

  29. K. Spencer, M.X. Zhang, Scripta Mater. 61, 44 (2009)

    Article  CAS  Google Scholar 

  30. Z. Li, S. Di, J. Alloys Compd. 719, 1 (2017)

    Article  CAS  Google Scholar 

  31. B.H. Jiang, Thermodynamics of materials (Profile of Shanghai Jiao Tong University Press, China, 1998), pp.168–169

    Google Scholar 

  32. L.D. Gulay, B. Harbrecht, Z. Anorg. Allg. Chem. 629, 463 (2003)

    Article  CAS  Google Scholar 

  33. N. Ponweiser, C.L. Lengauer, K.W. Richter, Intermetallics 19, 1737 (2011)

    Article  CAS  Google Scholar 

  34. L.D. Gulay, B. Harbrecht, J. Alloys Compd. 367, 103 (2004)

    Article  CAS  Google Scholar 

  35. Y. Grin, F.R. Wagner, M. Armbrüster, M. Kohout, J. Solid State Chem. 179, 1707 (2006)

    Article  CAS  Google Scholar 

  36. L. Arnberg, S. Westman, Acta Crystallog. A 34, 399 (1978)

    Article  Google Scholar 

  37. A.T. Dinsdale, Calphad 15, 317 (1991)

    Article  CAS  Google Scholar 

  38. J.O. Andersson, A.F. Guillermet, M. Hillert, B. Jansson, B. Sundman, Acta Metall. 34, 437 (1986)

    Article  CAS  Google Scholar 

  39. M. Hillert, J. Alloys Compd. 320, 161 (2001)

    Article  CAS  Google Scholar 

  40. T.H. Kim, S.R. Lee, K.H. Bae, H.J. Kim, M.W. Lee, T.S. Jang, Acta Mater. 133, 200 (2017)

    Article  CAS  Google Scholar 

  41. M. Souissi, C.M. Fang, R. Sahara, Z. Fan, Comput. Mater. Sci. 194, 110461 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of Gansu Province, China (No. 20JR5RA416, 21JR7RA308), the National Natural Science Foundation of China (No. 51605384), the Foundation of the Young Teachers in Lanzhou Jiaotong University (2017049) and the “Innovation Star” Project for outstanding graduate students in Gansu Province (No. 2022CXZX-537).

Funding

This study was funded by Innovation Star Graduate Research and Innovation Projects of Gansu Province, No. 2022CXZX-537, Xinhong Lu, Natural Science Foundation of Gansu Province, 20JR5RA416, Xilong Zhao, 21JR7RA308, Xilong Zhao, Youth Science Foundation of Lanzhou Jiaotong University, 2017049, Kun Wang.

Author information

Authors and Affiliations

Authors

Contributions

ZX: Conceptualization, original draft, supervision, funding acquisition, review and editing; LX: Experiment, investigation; WK: Picture production; HF: Data processing, Data validation.

Corresponding author

Correspondence to Xilong Zhao.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

Not applicable.

Consent to participate

All authors have approved to participate.

Consent for publication

The manuscript is approved by all authors for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Lu, X., Wang, K. et al. Investigation on the microstructure, phase formation and properties of aluminium alloy coatings by stud spraying. J Mater Sci: Mater Electron 33, 22256–22269 (2022). https://doi.org/10.1007/s10854-022-09004-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09004-z

Navigation