Skip to main content
Log in

Structural, optical, and electrical properties of NixZn1−xFe2O4 thin film prepared by spray pyrolysis route

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nanocrystalline spinel NixZn1−xFe2O4 (x = 0.0, 0.3, 0.5, 0.7) thin films have been deposited on glass substrate at temperature 350 °C via spray pyrolysis from metal nitrate aqueous solution. The thickness of the films ranges from 191 to 203 nm, whereas the average crystallite size ranges from 40 to 37 nm. The X-ray diffraction patterns confirm that the samples are well crystallized in the face-centered cubic spinel structure. Using cation distribution, the variation of theoretical and experimental lattice constant with Ni content is shown explicitly. The results of the optical measurement suggest that the Ni–Zn ferrite thin films are of direct band gap semiconductor and band gap energy varies from 2.50 to 2.23 eV. The Photoluminescence (PL) spectra of Ni–Zn ferrite thin films show that the emissions are due to the defect state transitions. The electrical resistivity for Ni–Zn ferrite thin films was measured as a function of temperature. The Hall constant, mobility, and carrier concentration of Ni–Zn ferrite thin films were calculated from the Hall effect study. It is found that the Ni–Zn ferrites are n-type semiconductor for x = 0.0, 0.3, 0.5 and starts to enter into p-type domain for x  = 0.7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The experimental data which support the findings of this study are available on request from the corresponding author.

References

  1. J.L. Deschanvres, M. Langlet, J.C. Joubert, J. Magn. Magn. Mater. 83, 437–438 (1990)

    Article  CAS  Google Scholar 

  2. A. Shahsavar, R. Ansarian, M. Bahiraei, Powder Technol. 340, 370–379 (2018)

    Article  CAS  Google Scholar 

  3. S.Q. Liu, X.L. Zhu, Y. Zhou, Z.D. Meng, Z.G. Chen, C.B. Liu et al., Catal. Sci. Technol. 7(15), 3210–3219 (2017)

    Article  CAS  Google Scholar 

  4. V. Adimule, M.G. Revaigh, H J. Adarsh, J. Mater. Eng. 29, 4586–4596 (2020)

    CAS  Google Scholar 

  5. V. Adimule, D. Bhowmik, A. Suryavanshi, IOP Conf. Ser. 577 012032 (2019)

  6. V. Adimule, S.S. Nandi, B.C. Yallur, D. Bhowmik, A.H. Jagadeesha, Mater. Today Chem. 20, 100438 (2021)

    Article  CAS  Google Scholar 

  7. V. Adimule, S.S. Nandi, B.C. Yallur et al., J. Fluoresc. 31, 487–499 (2021)

    Article  CAS  Google Scholar 

  8. A. Sutka, G. Strikis, G. Mezinskis, A. Lusis,, J. Zavickis, J. Kleperis, D. Jakovlevs, Thin Solid Films 526, 65–69 (2012)

    Article  CAS  Google Scholar 

  9. R.K. Sharma, R. Ghose, Ceram. Int. 41, 14684 (2015)

    Article  Google Scholar 

  10. M. Atif, S. Hasanain, M. Nadeem, Solid State Commun. 138(8), 416–421 (2006)

    Article  CAS  Google Scholar 

  11. A. Hossain, M.S.I. Sarker, M.K.R. Khan, F.A. Khan, M. Kamruzzaman, M.M. Rahman, Appl. Phys. A 124, 608 (2018)

    Article  Google Scholar 

  12. A. Hossain, M.S.I. Sarker, M.K.R. Khan, M.M. Rahman, Mater. Sci. Eng. B 253, 114496 (2020)

    Article  CAS  Google Scholar 

  13. M.A.A. Mamun, M.S.I. Sarker, M.R. Hasan, M.M. Haque, F.A. Khan, M.M. Rahman, M.K.R. Khan, Result Phys. 29, 104698 (2021)

    Article  Google Scholar 

  14. A. Ali, M.S.I. Sarker, M. Islam, M.K.R. Khan, F.A. Khan, M.N.I. Khan, M.M. Rahman, Result Phys. 25, 104251 (2021)

    Article  Google Scholar 

  15. S.S. Kumbhar, M.A. Mahadik, V.S. Mohite, Y.M. .Hunge, K.Y. Rajpure, C.H. Bhosale, Mater. Res. Bull. 67, 47–54 (2015)

    Article  CAS  Google Scholar 

  16. N. Gupta, A. Verma, C. Subhash, D. Kashyap, C. Dube, Solid State Commun. 134, 689–694 (2005)

    Article  CAS  Google Scholar 

  17. Q. Tian, J. gong, Q. Wang, S. Wang, X. Zhang, Thin Solid Films 518, 313–318 (2009)

    Article  CAS  Google Scholar 

  18. T. Yuan, Z. Wei, J. Yuan, L. Yan, Q. Liu, J. Wang, J. Sol-Gel Sci. Technol. 58, 501–506 (2011)

    Article  CAS  Google Scholar 

  19. B. Ghosh, S. Kumar, Hyperfine Interact. 183, 163–169 (2008)

    Article  CAS  Google Scholar 

  20. V. Sreeja, S. Vijayanand, S. Deka, P.A. Joy, Hyperfine Interact. 183, 99–107 (2008)

    Article  CAS  Google Scholar 

  21. T. Prasada, M.C. Santhosh Kumar, S. Anbumozhi, M.Ashok Angayarkanni, J. Alloys Compd. 485, 413–417 (2009)

    Article  Google Scholar 

  22. S.S. Shinde, C.H. Bhosale, K.Y. Rajpure, J. Mole Struct. 1021, 123–129 (2012)

    Article  CAS  Google Scholar 

  23. A. Galal, O. Sadek, M. Soliman, S. Ebrahim, M. Anas, Nat. Portf. 11, 20170 (2021)

    CAS  Google Scholar 

  24. J. Hwang, M. Choi, H.S. Shin, B.K. Ju, M. Chun, Appl. Sci. 10, 6279 (2020)

    Article  CAS  Google Scholar 

  25. T. Zhou, D. Zhang, L. Jia, F.B. Jin, Y. Liao, T. Wen, C. Liu, H. Su, N. Jia, Z. Zheng, V.G. Harris, H. Zhang, Z. Zhong, J. Phys. Chem. C 119, 13207–13214 (2015)

  26. X. Zhou, J. Wang, L. Zhou, D. Yao, Appl. Phys. A 128, 306 (2022)

    Article  CAS  Google Scholar 

  27. A. Takayama, M. Okuya, S. Kaneko, Solid State Ionics 172, 257 (2004)

    Article  CAS  Google Scholar 

  28. Z. Wu, M. Okuya, S. Kaneko, Thin Solid Films 385, 109 (2001)

    Article  CAS  Google Scholar 

  29. V.d. Pauw, Philips Technique RDCH 20, 230 (1958)

    Google Scholar 

  30. V. d. Pauw. Philipes Res. Rept. Results 13 1 (1958)

  31. A.E. Saba, E.M. Elsayed, M.M. Moharam, J. Mater. Sci. 46, 3574–3582 (2011)

    Article  CAS  Google Scholar 

  32. S. Bid, S.K. Pradhan. J. Mater. Chem. Phys. 84, 291–301 (2004)

    Article  CAS  Google Scholar 

  33. M. Saleem, L. Fang, H.B. Ruan, F. Wu, Q.L. Huang, C.L. Xu, C.Y. Kong, Int. J. Phys. Sci. 7, 2971 (2012)

    Article  CAS  Google Scholar 

  34. M. George, S.S. Nair, A.M. John, P.A. Joy, M.R. Anantharaman, J. Phys. D 39, 900 (2006)

    Article  CAS  Google Scholar 

  35. K. Kamala Bharathi, G. Markandeyulu, C.V. Ramana, J. Phys. Chem. C 115, 554 (2011)

    Article  Google Scholar 

  36. P. Scherrer, Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr. Ges Wiss Göttingen 26, 98 (1918)

    Google Scholar 

  37. C.J. Rupp, S. Chakraborty, R. Ahuja, R.J. Baierle, J. Mater. Chem. Phys. 1, 6 (2015)

    Google Scholar 

  38. A. Maher, W. Mohamed, B. Mohamed, J. Magn. Magn. Mater. 378, 246–252 (2015)

    Article  Google Scholar 

  39. S. Chakraverty, S. Mitra, K. Mandal, P.M.G. Nambissan, S. Chattopadhyay, Ferrites 136 (1959)

  40. R. Sharma, S. Singhal, Phys. B 414, 83–90 (2013)

    Article  CAS  Google Scholar 

  41. C. Prakash, J.S. Baijal, Solid State Commun. 50, 557 (1984)

    Article  CAS  Google Scholar 

  42. M.B. Morales, M.H. Phan, S. Pal, N.A. Frey, J. Appl. Phys. 99 (2006)

  43. F.W. Billmeyer Jr., P.J. Alessi, Assessment of Color‐Measuring Instruments. Wiley, New York (1981)

  44. D. R. Sahu. J. Microchem. 38 1252 (2007)

  45. R.Y. Krishnan, S. Manikandan, K.S. Suganthi, J. Mater. Sci. Chemic Eng. 699, 524 (2001)

    Google Scholar 

  46. M. Oztas, M. Bedir, Thin Solid Films 516, 1703 (2008)

    Article  Google Scholar 

  47. A. Ayana, F. Hou, J. Seidel, B.V. Rajendra, P. Sharma, Mater. Sci. Semiconduct. Process. 146, 106680 (2022)

    Article  Google Scholar 

  48. D. Gao, Z. Shi, Y. Xu, J. Zhang, G. Yang, J. Zhang, X. Wang, D. Xue, Nanoscale Res. Lett. 5, 1289 (2010)

    Article  CAS  Google Scholar 

  49. A. Ayana, B. Neelamma, P.S. Gummagol, P. Patil, B.V.Rajendra Sharma, Mater. Sci. Semiconduct. Process. 133, 105931 (2021)

    Article  CAS  Google Scholar 

  50. R.J.D. Tilley et al., Defects in Solids. Wiley, New Jersey (2008)

  51. Y. Reddy, B. Ajitha, P.S. Reddy, Mater. Express 4, 32 (2014)

    Article  CAS  Google Scholar 

  52. V. Jeseentharani, M. George, B. Jeyaraj, A. Dayalan, K.S. Nagaraja, J. Exper. Nanosci. 83, 358–370 (2012)

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge M Nurul Huda Liton for providing XRD data during his Ph.D program at Hong Kong and M Tanveer Karim, Lecturer, Dept. of Physics, RUET for providing us the Photoluminescence (PL) data.

Author information

Authors and Affiliations

Authors

Contributions

NY: Methodology, investigation, writing—original draft, writing—review and editing. MKRK: Conceptualization, methodology, investigation, supervision, writing—review and editing. MMR: Resources, MSIS: Conceptualization, methodology, supervision, writing—original draft, writing—review and editing.

Corresponding authors

Correspondence to M. K. R. Khan or M. S. I. Sarker.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeasmin, N., Khan, M.K.R., Rahman, M.M. et al. Structural, optical, and electrical properties of NixZn1−xFe2O4 thin film prepared by spray pyrolysis route. J Mater Sci: Mater Electron 33, 22244–22255 (2022). https://doi.org/10.1007/s10854-022-09003-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09003-0

Navigation