Skip to main content
Log in

A review of nanoindentation and related cathodoluminescence studies on semiconductor materials

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nanoindentation studies on bulk and epitaxial semiconductor crystals have been reviewed in general. The common materials of technological interest such as Si, Ge, GaAs, GaN, InP, CdZnTe, HgCdTe etc. have been included. Issues related with the measurement and analysis of load–displacement characteristics have been discussed in detail, including those for cyclic nanoindentation and continuous stiffness measurements. Common mistakes/oversights in the extraction of mechanical properties, particularly for the elastic modulus, have been highlighted. Various features observed in load–displacement curves are discussed in connection with different semiconductor materials. These include pop-in/pop-out events and serrations observed in general, and the open-jaw and hysteresis like features in cyclic nanoindentation. Cathodoluminescence studies on indented surfaces have also been included to highlight the deformation behaviour of some of the crystalline semiconductor materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. L. Sugiura, J. Appl. Phys. 81(4), 1633–1638 (1997). https://doi.org/10.1063/1.364018

    Article  CAS  Google Scholar 

  2. A. Rogalski, Infrared Phys. Technol. 43, 187–210 (2002). https://doi.org/10.1016/S1350-4495(02)00140-8

    Article  Google Scholar 

  3. P. Capper and M. Mauk, Eds., Liquid Phase Epitaxy of Electronic, Optical and Optoelectronic Materials. (John Wiley & Sons, Ltd., 2007) pp. 21–38.

  4. V. Swaminathan, Bull. Mater. Sci. 4(4), 403–442 (1982). https://doi.org/10.1007/BF02748739

    Article  CAS  Google Scholar 

  5. I. Yonenaga, Y. Ohno, T. Taishi, Y. Tokumoto, H. Makino, Y. Yao, Y. Kamimura, K. Edgawa, J. Cryst. Growth 318(1), 415–417 (2011). https://doi.org/10.1016/j.jcrysgro.2010.10.060

    Article  CAS  Google Scholar 

  6. M. Lin, H. Wen, C. Huang, Y. Jeng, W. Yau, W. Wu, C. Chou, Appl. Surf. Sci. 256(11), 3464–3467 (2010). https://doi.org/10.1016/j.apsusc.2009.12.054

    Article  CAS  Google Scholar 

  7. J. Huang, K. Xu, Y.M. Fan, J.F. Wang, J.C. Zhang, G.Q. Ren, Nanoscale Res. Lett. 9(1), 1–7 (2014). https://doi.org/10.1186/1556-276X-9-649

    Article  CAS  Google Scholar 

  8. Y. Leng, Materials Characterization: Introduction to microscopic and spectroscopic methods (John Wiley & Sons (Asia) Pvt. Ltd., Singapore, 2008) pp. 15–60.

  9. T.E. Schlesinger, J.E. Toney, H. Yoon, E.Y. Lee, B.A. Brunett, L. Franks, Mater. Sci. Eng. 32, 103–189 (2001)

    Article  Google Scholar 

  10. R.O. Piltz, J.R. MacLean, S.J. Clark, G.J. Ackland, P.D. Hatton, J. Crain, Phys. Rev. B 52(6), 4072–4085 (1995). https://doi.org/10.1103/PhysRevB.52.4072

    Article  CAS  Google Scholar 

  11. I.M. Baker, C.D. Maxey, J. Electron. Mater. 30(6), 682–689 (2001). https://doi.org/10.1007/BF02665856

    Article  CAS  Google Scholar 

  12. R. Manchanda, R. Nokhwal, V. Sharma, H. Sharma, B.L. Sharma, S. Sitharaman, Crystal 21(1), 33–35 (2016)

    Google Scholar 

  13. H.K. Sharma, R.K. Sharma, R.S. Saxena, A. Gokhale, R. Prasad, Mater. Res. Express 7(1), 16430 (2020). https://doi.org/10.1088/2053-1591/ab688e

    Article  CAS  Google Scholar 

  14. R. Nokhwal, V. Srivastav, A. Goyal, B.L. Sharma, S.A. Hashmi, R.K. Sharma, J. Electron. Mater. 46(12), 6795–6803 (2017). https://doi.org/10.1007/s11664-017-5764-6

    Article  CAS  Google Scholar 

  15. P. Capper, Ed., Properties of narrow gap Cd based compounds. (INSPEC, The Institution of Electrical Engineers, London, 1994) pp. 37–64.

  16. H. Huang, J. Yan, J. Mater. Res. 30(11), 1861–1868 (2015). https://doi.org/10.1557/jmr.2015.120

    Article  CAS  Google Scholar 

  17. C.C. Yang, Q. Jiang, Scr. Mater. 51(11), 1081–1085 (2004). https://doi.org/10.1016/j.scriptamat.2004.08.001

    Article  CAS  Google Scholar 

  18. V. Domnich, Y.G. Gogotsi, Rev. Adv. Mater. Sci. 3, 1–36 (2002)

    Article  CAS  Google Scholar 

  19. J. E. Bradby, J. S. Williams, and M. V. Swain, Phys. Rev. B - Condens. Matter Mater. Phys. 67(8), 1–9 (2003). doi: https://doi.org/10.1103/PhysRevB.67.085205.

  20. V. Domnich, Y. Gogotsi, S. Dub, Appl. Phys. Lett. 76(16), 2214–2216 (2000). https://doi.org/10.1063/1.126300

    Article  CAS  Google Scholar 

  21. F. Sizov, A. Richter, Y.E. Bilevych, Z. Tsybrii, K. Kubica, R. Ries, Yu. Sidorov, Ukr. J. Phys. 50(1), 46–51 (2005)

    CAS  Google Scholar 

  22. W.C. Oliver, G.M. Pharr, J. Mater. Res. 7, 1564–1583 (1992)

    Article  CAS  Google Scholar 

  23. A. C. Fisher-Cripps, Nanoindentation, Third edit. (Springer, 2011) pp. 21–36.

  24. V. Domnich, Y. Gogotsi, M. Trenary, Mater. Res. Soc. Symp. - Proc. 649, 1–6 (2001). https://doi.org/10.1557/proc-649-q8.9

    Article  Google Scholar 

  25. E.R. Weppelmann, J.S. Field, M.V. Swain, J. Mater. Res. 8(4), 830–840 (1993). https://doi.org/10.1557/JMR.1993.0830

    Article  CAS  Google Scholar 

  26. T. Juliano, V. Domnich, Y. Gogotsi, J. Mater. Res. 19(10), 3099–3108 (2004). https://doi.org/10.1557/JMR.2004.0403

    Article  CAS  Google Scholar 

  27. L. Chang, L.C. Zhang, Int. J. Mod. Phys. B 22(31–22), 6022–6028 (2008). https://doi.org/10.1142/s0217979208051522

    Article  CAS  Google Scholar 

  28. G. Weill, J.L. Mansot, G. Sagon, C. Carlone, J.M. Besson, Semicond. Sci. Technol. 4(4), 280–282 (1989). https://doi.org/10.1088/0268-1242/4/4/029

    Article  CAS  Google Scholar 

  29. B. Bhushan, A.V. Kulkarni, W. Bonin, J.T. Wyrobek, Philos. Mag. A. 74(5), 1117–1128 (1996). https://doi.org/10.1080/01418619608239712

    Article  CAS  Google Scholar 

  30. Fu. Xu, Xu. Yadong, Xu. Lingyan, Gu. Yaxu, N. Jia, W. Bai, G. Zha, T. Wang, W. Jie, CrystEngComm 18(30), 5667–5673 (2016). https://doi.org/10.1039/c6ce00519e

    Article  CAS  Google Scholar 

  31. C.H. Chien, S.R. Jian, C.T. Wang, J.Y. Juang, J.C. Huang, Y.S. Lai, J. Phys. D. Appl. Phys. 40(13), 3985–3990 (2007). https://doi.org/10.1088/0022-3727/40/13/011

    Article  CAS  Google Scholar 

  32. G. Salviati, M. Albrecht, C. Zanotti-Fregonara, N. Armani, M. Mayer, Y. Shreter, M. Guzzi, Yu. Melnik, K. Vassilevski, V. Dmitriev, H. Strunk, Phys. Status Solidi Appl. Res. 171(1), 325–339 (1999). https://doi.org/10.1002/(SICI)1521-396X(199901)171:1%3c325::AID-PSSA325%3e3.0.CO;2-1

    Article  CAS  Google Scholar 

  33. C. Tsai, S. Jian, J. Juang, Appl. Surf. Sci. 254, 1997–2002 (2008). https://doi.org/10.1016/j.apsusc.2007.08.022

    Article  CAS  Google Scholar 

  34. I. Ratschinski, H. Leipner, F. Heyroth, W. Franzel, O. Moutanabbir, R. Hammer, M. Jurisch, J. Phys. Conf. Ser. 281, 1 (2011). https://doi.org/10.1088/1742-6596/281/1/012007

    Article  Google Scholar 

  35. S.-R. Jian, J.-Y. Juang, IEEE Trans. Nanotechnol. 12(3), 304–308 (2013). https://doi.org/10.1109/tnano.2013.2240313

    Article  CAS  Google Scholar 

  36. C.-H. Tsai, W.-H. Yau, Surf. Eng. 28(3), 176–181 (2012). https://doi.org/10.1179/1743294411y.0000000057

    Article  CAS  Google Scholar 

  37. S.-R. Jian, J.-Y. Juang, N.-C. Chen, J.S.-C. Jang, J.C. Huang, Y.-S. Lai, Nanosci. Nanotechnol. Lett. 2(4), 315–321 (2011). https://doi.org/10.1166/nnl.2010.1100

    Article  CAS  Google Scholar 

  38. M.R. Surowiec, H.S. Leipner, J. Schreiber, J. Appl. Crystallogr. 22(6), 606–612 (1989). https://doi.org/10.1107/s0021889889008940

    Article  CAS  Google Scholar 

  39. S.E. Grillo, M. Ducarroir, M. Nadal, E. Tournié, J.P. Faurie, J. Phys. D. Appl. Phys. 36, 1 (2003). https://doi.org/10.1088/0022-3727/36/1/102

    Article  Google Scholar 

  40. A. Lefebvre, Y. Androussi, G. Vanderschaeve, Phys. Status Solidi 99(2), 405–412 (1987). https://doi.org/10.1002/pssa.2210990210

    Article  CAS  Google Scholar 

  41. R. Navamathavan, D. Arivuoli, G. Attolini, C. Pelosi, Appl. Surf. Sci. 180, 119–125 (2001). https://doi.org/10.1016/S0169-4332(01)00336-1

    Article  CAS  Google Scholar 

  42. D. Chrobak, R. Nowak, J. Phys. Conf. Ser. 281, 1 (2011). https://doi.org/10.1088/1742-6596/281/1/012028

    Article  CAS  Google Scholar 

  43. X. Fu, Y. Xu, L. Xu, Y. Gu, N. Jia, W. Jie, J. Cryst. Growth 478, 71–76 (2017). https://doi.org/10.1016/j.jcrysgro.2017.06.018

    Article  CAS  Google Scholar 

  44. Z. Zhang, H. Gao, W. Jie, D. Guo, R. Kang, Y. Li, Semicond. Sci. Technol. 23, 10 (2008). https://doi.org/10.1088/0268-1242/23/10/105023

    Article  CAS  Google Scholar 

  45. H.K. Sharma, R.S. Saxena, A. Gokhale, A. Kapoor, R. Prasad, R.K. Sharma, Def. Sci. J. 70(6), 650–655 (2020). https://doi.org/10.14429/dsj.70.16383

    Article  CAS  Google Scholar 

  46. Y. Li, R. Kang, H. Gao, J. Wang, Y. Lang, Rare Met. 28(6), 570–575 (2009). https://doi.org/10.1007/s12598-009-0110-7

    Article  CAS  Google Scholar 

  47. P. Moravec, P. Hoschl, J. Franc, E. Belas, R. Fesh, R. Grill, P. Horodysky, P. Praus, J. Electron. Mater. 35(6), 1206–1213 (2006). https://doi.org/10.1007/s11664-006-0242-6

    Article  CAS  Google Scholar 

  48. D. Robidas, C. Arunseshan, R. Deepthi, D. Arivuoli, Int. J. Mech. Ind. Eng. 4(1), 44–48 (2014). https://doi.org/10.47893/ijmie.2014.1183

    Article  Google Scholar 

  49. T. Saraswati, T. Sritharan, S. Mhaisalkar, C.D. Breach, F. Wulff, Mater. Sci. Eng. A 423(1–2), 14–18 (2006). https://doi.org/10.1016/j.msea.2005.10.080

    Article  CAS  Google Scholar 

  50. V. Klinger, T. Roesener, G. Lorenz, M. Petzold, F. Dimroth, Thin Solid Films 548, 358–365 (2013). https://doi.org/10.1016/j.tsf.2013.08.079

    Article  CAS  Google Scholar 

  51. X. Li, B. Bhushan, Mater. Charact. 48, 11–36 (2002)

    Article  CAS  Google Scholar 

  52. G.M. Pharr, A. Bolshakov, J. Mater. Res. 17(10), 2660–2671 (2002). https://doi.org/10.1557/JMR.2002.0386

    Article  CAS  Google Scholar 

  53. ASMEC—advanced surface mechanics. https://www.asmec.de/en/product.php?seite=1 (accessed Jul. 14, 2022).

  54. D. J. Oliver, “Nanoindentation-induced Deformation Mechanisms in Germanium,” Ph.D Thesis November 1–112, 2008.

  55. Hysitron TI 980 TriboIndenter. https://www.bruker.com/en/meta/forms/bns-form-pages/brochures/ni/hysitron-ti-980.html (accessed Jul. 14, 2022).

  56. T. Chudoba, F. Richter, Surf. Coatings Technol. 148(2–3), 191–198 (2001). https://doi.org/10.1016/S0257-8972(01)01340-8

    Article  CAS  Google Scholar 

  57. C.A. Schuh, Mater. Today 9(5), 32–40 (2006). https://doi.org/10.1016/S1369-7021(06)71495-X

    Article  CAS  Google Scholar 

  58. T.F. Page, W.C. Oliver, C.J. McHargue, J. Mater. Res. 7(2), 450–473 (1992). https://doi.org/10.1557/JMR.1992.0450

    Article  CAS  Google Scholar 

  59. P. Caldas, E. Silva, R. Prioli, J. Huang, R. Juday, A. Fischer, F. Ponce, J. Appl. Phys. 121, 12 (2017). https://doi.org/10.1063/1.4978018

    Article  CAS  Google Scholar 

  60. S. Jian, Nanoscale Res Lett 3, 6–13 (2008). https://doi.org/10.1007/s11671-007-9106-0

    Article  CAS  Google Scholar 

  61. J.S. Field, M.V. Swain, J. Mater. Res. 8(2), 297–306 (1993). https://doi.org/10.1557/JMR.1993.0297

    Article  CAS  Google Scholar 

  62. C. Tsai, W. Yau, Surf. Eng. 28, 3 (2012). https://doi.org/10.1179/1743294411Y.0000000057

    Article  CAS  Google Scholar 

  63. Y.G. Gogotsi, V. Domnich, S.N. Dub, A. Kailer, K.G. Nickel, J. Mater. Res. 15(4), 871–879 (2000). https://doi.org/10.1557/JMR.2000.0124

    Article  CAS  Google Scholar 

  64. T.-H. Fang, W.-J. Chang, C.-M. Lin, C.-C. Chang, Int. J. Mod. Phys. B 23(30), 5639–5647 (2009). https://doi.org/10.1142/s0217979209053643

    Article  CAS  Google Scholar 

  65. P.V. Liempt, J. Sietsma, Mater. Sci. Eng. A 662, 80–87 (2016). https://doi.org/10.1016/j.msea.2016.03.013

    Article  CAS  Google Scholar 

  66. K.W. Siu, A.H.W. Ngan, Philos. Mag. 93(5), 449–467 (2013). https://doi.org/10.1080/14786435.2012.722234

    Article  CAS  Google Scholar 

  67. ASMEC. Quasi continuous stiffness measurements QCSM, 2017. www.asmec.de/uploads/media/Aplication_note_QCSM_en.pdf (accessed Jul. 14, 2022).

  68. G.M. Pharr, E.G. Herbert, Y. Gao, Annu. Rev. Mater. Res. 40, 271–292 (2010). https://doi.org/10.1146/annurev-matsci-070909-104456

    Article  CAS  Google Scholar 

  69. L. Chang, L. Zhang, Mater. Sci. Eng. A 506, 125–129 (2009). https://doi.org/10.1016/j.msea.2008.11.021

    Article  CAS  Google Scholar 

  70. M. Kiran, B. Haberl, J. Bradby, J. Williams, Nanoindentation of Silicon and Germanium, 1st edn. (Elsevier Inc, 2015), pp.1–34

    Google Scholar 

  71. D. Ge, A.M. Minor, E.A. Stach, J.W. Morris, Philos. Mag. 86, 4069–4080 (2006). https://doi.org/10.1080/14786430600586507

    Article  CAS  Google Scholar 

  72. D. Bellet, P. Lamagnère, A. Vincent, Y. Bréchet, J. Appl. Phys. 80(7), 3772–3776 (1996). https://doi.org/10.1063/1.363305

    Article  CAS  Google Scholar 

  73. J. Jang, G.M. Pharr, Acta Mater. 56(16), 4458–4469 (2008). https://doi.org/10.1016/j.actamat.2008.05.005

    Article  CAS  Google Scholar 

  74. W.D. Nix, H. Gao, J. Mech. Phys. Solids 46(3), 411–425 (1998). https://doi.org/10.1016/S0022-5096(97)00086-0

    Article  CAS  Google Scholar 

  75. B.X. Xu, Z.F. Yue, J. Mater. Res. 21(7), 1793–1797 (2006). https://doi.org/10.1557/jmr.2006.0222

    Article  CAS  Google Scholar 

  76. N. Liu, X.-J. Yang, Z. Yu, L. Zhao, Trans. Nonferrous Met. Soc. China 30(1), 181–190 (2020). https://doi.org/10.1016/S1003-6326(19)65190-3

    Article  CAS  Google Scholar 

  77. J.E. Bradby, J.S. Williams, J. Wong-Leung, M.V. Swain, P. Munroe, Appl. Phys. Lett. 80(15), 2651–2653 (2002). https://doi.org/10.1063/1.1469660

    Article  CAS  Google Scholar 

  78. L.Q. Huston, M.S.R.N. Kiran, L.A. Smillie, J.S. Williams, J.E. Bradby, Appl. Phys. Lett. 111, 2 (2017). https://doi.org/10.1063/1.4993163

    Article  CAS  Google Scholar 

  79. D. Oliver, S. Ruffell, J. Bradby, J. Williams, M. Swain, P. Munroe, P. Simpson, Phys. Rev. B. 80(11), 1–8 (2009). https://doi.org/10.1103/PhysRevB.80.115210

    Article  CAS  Google Scholar 

  80. Y. Li, R. Kang, H. Gao, D. Wu, Mater. Manuf. Process. 25(6), 412–417 (2010). https://doi.org/10.1080/15394450902996643

    Article  CAS  Google Scholar 

  81. M. Martyniuk, R.H. Sewell, C.A. Musca, J.M. Dell, L. Faraone, Appl. Phys. Lett. 87(25), 1–3 (2005). https://doi.org/10.1063/1.2143411

    Article  CAS  Google Scholar 

  82. J.Z. Hu, L.D. Merkle, C.S. Menoni, I.L. Spain, Phys. Rev. B 34(7), 4679–4684 (1986). https://doi.org/10.1103/PhysRevB.34.4679

    Article  CAS  Google Scholar 

  83. S. Ruffell, J.E. Bradby, J.S. Williams, Appl. Phys. Lett. 89(9), 2004–2007 (2006). https://doi.org/10.1063/1.2339039

    Article  CAS  Google Scholar 

  84. O.G. Lysenko, S.N. Dub, V.I. Grushko, E.I. Mitskevich, G.N. Tolmacheva, J. Superhard Mater. 35(6), 350–355 (2013). https://doi.org/10.3103/s1063457613060038

    Article  Google Scholar 

  85. D.J. Oliver, J.E. Bradby, J.S. Williams, M.V. Swain, P. Munroe, J. Appl. Phys. 105, 12 (2009). https://doi.org/10.1063/1.3151967

    Article  CAS  Google Scholar 

  86. J.E. Bradby, J.S. Williams, J. Wong-Leung, S.O. Kucheyev, M.V. Swain, P. Munroe, Philos. Mag. A 82(10), 1931–1939 (2002). https://doi.org/10.1080/01418610210135089

    Article  CAS  Google Scholar 

  87. J. Huang, K. Xu, X. Gong, J. Wang, Y. Fan, J. Liu, X. Zeng, G. Ren, T. Zhou, H. Yang, Appl. Phys. Lett. 98(22), 2–5 (2011). https://doi.org/10.1063/1.3593381

    Article  CAS  Google Scholar 

  88. S.R. Jian, Y.Y. Lin, J. Alloys Compd. 590, 153–156 (2014). https://doi.org/10.1016/j.jallcom.2013.12.103

    Article  CAS  Google Scholar 

  89. S.B. Qadri, E.F. Skelton, A.W. Webb, J. Dinan, J. Vac. Sci. Technol. A Vacuum Surfaces Film. 4(4), 1974–1976 (2002). https://doi.org/10.1116/1.574010

    Article  Google Scholar 

  90. S.B. Qadri, E.F. Skelton, A.W. Webb, J. Kennedy, J. Vac. Sci. Technol. A Vacuum Surfaces Film. 4(4), 1971–1973 (2002). https://doi.org/10.1116/1.574009

    Article  Google Scholar 

  91. A.W. Webb, S.B. Qadri, E.R. Carpenter, E.F. Skelton, J. Kennedy, J. Appl. Phys. 61(7), 2492–2494 (1987). https://doi.org/10.1063/1.337922

    Article  CAS  Google Scholar 

  92. H. Zhou, C. Wang, Y. Song, C. Xu, Philos. Mag. Lett. 92(4), 188–193 (2012). https://doi.org/10.1080/09500839.2011.652684

    Article  CAS  Google Scholar 

  93. V.N. Babentsov, Semicond. Phys. Quantum Electron. Optoelectron. 17(1), 29–33 (2014). https://doi.org/10.15407/spqeo17.01.029

    Article  CAS  Google Scholar 

  94. K. Guergouri, N. Brihi, R. Triboulet, J. Cryst. Growth 209(4), 709–715 (2000). https://doi.org/10.1016/S0022-0248(99)00627-2

    Article  CAS  Google Scholar 

  95. V.A. Coleman, J.E. Bradby, C. Jagadish, M.R. Phillips, Appl. Phys. Lett. 89(8), 1–4 (2006). https://doi.org/10.1063/1.2338552

    Article  CAS  Google Scholar 

  96. H.S. Leipner, J. Schreiber, H. Uniewski, S. Hildebrandt, Scanning Microsc. 12(1), 149–160 (1998)

    Google Scholar 

  97. W.H. Yau, P.C. Tseng, H.C. Wen, C.H. Tsai, W.C. Chou, Microelectron. Reliab. 51(5), 931–935 (2011). https://doi.org/10.1016/j.microrel.2011.01.005

    Article  CAS  Google Scholar 

  98. H.C. Wen, W.C. Chou, W.H. Yau, W.C. Fan, L. Lee, K.F. Jian, J. Alloys Compd. 625, 52–56 (2015). https://doi.org/10.1016/j.jallcom.2014.10.162

    Article  CAS  Google Scholar 

  99. B.G. Yacobi, D.B. Holt, J. Appl. Phys. 59, 4 (1986). https://doi.org/10.1063/1.336491

    Article  Google Scholar 

  100. M. Herrera Zaldívar, P. Fernández, J. Piqueras. Semicond. Sci. Technol. 13(8), 900–905 (1998). https://doi.org/10.1088/0268-1242/13/8/013

    Article  Google Scholar 

  101. J.E. Bradby, S.O. Kucheyev, J.S. Willams, J. Wong-leung, M.V. Swain, M.R. Phillips, Appl. Phys. Lett. 80(3), 383–385 (2002). https://doi.org/10.1063/1.1436280

    Article  CAS  Google Scholar 

  102. M.A. Reshchikov, H. Morko, J. Appl. Phys. 97(6), 061301 (2005). https://doi.org/10.1063/1.1868059

    Article  CAS  Google Scholar 

  103. J.P. Rivière, B. Sieber, Microsc. Microanal. Microstruct. 2, 503–514 (2014)

    Article  Google Scholar 

  104. H. Uniewski, J. Schreiber, H.S. Leipner, L. Höring, S. Hildebrandt, Phys. Status Solidi. 171(1), 89–97 (2002). https://doi.org/10.1002/(sici)1521-396x(199901)171:1%3c89::aid-pssa89%3e3.0.co;2-d

    Article  Google Scholar 

  105. M. Inoue, I. Teramoto, S. Takayanagi, J. Appl. Phys. 34(2), 404–405 (1963). https://doi.org/10.1063/1.1702621

    Article  CAS  Google Scholar 

  106. A. Fissel, M. Schenk, J. Mater. Sci. Mater. Electron. 3(3), 147–156 (1992). https://doi.org/10.1007/BF00695511

    Article  CAS  Google Scholar 

  107. B. Sieber, J.L. Farvacque, A. Miri, Phys. Status Solidi 138(2), 673–680 (1993). https://doi.org/10.1002/pssa.2211380238

    Article  CAS  Google Scholar 

  108. C. Levade, G. Vanderschaeve, Phys. Status Solidi Appl. Res. 171(1), 83–88 (1999). https://doi.org/10.1002/(SICI)1521-396X(199901)171:1%3c83::AID-PSSA83%3e3.0.CO;2-C

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Director, Solid State Physics Laboratory, Delhi for permitting to publication this work. The authors greatly acknowledge the contribution of Dr. A. K. Kapoor and Mr. Anand Kumar in providing CL images of the CdZnTe single crystals presented here.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed in the understanding of concepts and data analysis of reported result. The First draft was prepared by HKS and all authors provided their valuable feedback and suggested corrections. RKS and RP has helped to analysing the results of CL and pressure-induced phase transformation. RSS has helped in performing mathematical analysis.

Corresponding author

Correspondence to Hemant Kumar Sharma.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, H.K., Sharma, R.K., Saxena, R.S. et al. A review of nanoindentation and related cathodoluminescence studies on semiconductor materials. J Mater Sci: Mater Electron 33, 21223–21245 (2022). https://doi.org/10.1007/s10854-022-08995-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08995-z

Navigation