Skip to main content
Log in

Microstructure and microwave dielectric properties of multi-oxide-doped (Zr, Sn)TiO4 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

(Zr0.8Sn0.2)TiO4 (ZST) ceramics were prepared by solid-phase method. The effects of MgO/La2O3/Nb2O5 doped on the phase composition, microstructure, sintering behavior, and microwave dielectric properties of ZST ceramics were investigated. XRD analysis showed that the major crystalline phase was ZST. Very small amounts of phases, Nb2O5 and Mg(Ti2O5), were observed when dopants were added, and Nb2O5 inhibited the formation of Mg(Ti2O5). The results showed that upon adding 7 wt% Nb2O5 and small amounts of MgO and La2O3 to the ceramics, the permittivity of the ceramics was greatly reduced compared to that of other oxide-doped (Zr, Sn)TiO4 ceramic materials, and the Q × f value was also increased. The coefficients of thermal expansion of ZST ceramics in this study were within the range reported in the literature. Optimal dielectric properties, εr = 34.78, Q × f = 55,190 GHz (f = 5.8 GHz), τf = − 13.86 ppm/°C, and CTE = 7.0 ppm/°C, were achieved for the sample with 7 wt% Nb2O5 sintered at 1330 °C for 2 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Code availability

Not applicable.

References

  1. J.R. Sanchez, C. Bachiller, M. Julia, V. Nova, H. Esteban, V.E. Boria, IEEE Microw Wirel. Compon. Lett. 28, 990 (2018). https://doi.org/10.1109/lmwc.2018.2871644

    Article  Google Scholar 

  2. R. Muhammad, Y. Iqbal, J. Mater. Sci. Mater. Electron. 26, 9092 (2015). https://doi.org/10.1007/s10854-015-3596-9

    Article  CAS  Google Scholar 

  3. R. Muhammad, Y. Iqbal, Mater. Lett. 153, 121 (2015). https://doi.org/10.1016/j.matlet.2015.04.021

    Article  CAS  Google Scholar 

  4. C.L. Huang, C.S. Hsu, R.J. Lin, Mater. Res. Bull. 36, 1985 (2001). https://doi.org/10.1016/s0025-5408(01)00677-8

    Article  CAS  Google Scholar 

  5. C.L. Huang, M.H. Weng, H.L. Chen, Mater. Chem. Phys. 71, 17 (2001). https://doi.org/10.1016/s0254-0584(00)00528-9

    Article  CAS  Google Scholar 

  6. M. Saleem, Y. Iqbal, S. Qin, X. Wu, R. Muhammad, F. Zhu, J. Mater. Sci. Mater. Electron. 26, 1507 (2014). https://doi.org/10.1007/s10854-014-2568-9

    Article  CAS  Google Scholar 

  7. R. Muhammad, Y. Iqbal, J. Mater. Sci. Mater. Electron. 26, 4870 (2015). https://doi.org/10.1007/s10854-015-2995-2

    Article  CAS  Google Scholar 

  8. A. Tumuluri, R.M.S. Raju, K.C.J. Raju, V. Seshubai, T. Rajasekharan, Mater. Lett. 154, 128 (2015). https://doi.org/10.1016/j.matlet.2015.04.062

    Article  CAS  Google Scholar 

  9. D. Pamu, G.L.N. Rao, K.C.J. Raju, J. Alloy. Compd. 509, 9289 (2011). https://doi.org/10.1016/j.jallcom.2011.06.033

    Article  CAS  Google Scholar 

  10. Y.S. Ahn, K.H. Yoon, E.S. Kim, J. Eur. Ceram. Soc. 23, 2519 (2003). https://doi.org/10.1016/s0955-2219(03)00143-2

    Article  CAS  Google Scholar 

  11. B. Chen, L. Han, B. Li, J. Mater. Sci. Mater. Electron. 30, 2847 (2018). https://doi.org/10.1007/s10854-018-0561-4

    Article  CAS  Google Scholar 

  12. L. Qian, H. Zhou, Q. Jiang, L. Ren, W. Xie, X. Luo, Q. Sun, J. Mater. Sci. Mater. Electron. 27, 6183 (2016). https://doi.org/10.1007/s10854-016-4547-9

    Article  CAS  Google Scholar 

  13. Y.U.E. Zhen-Xing, Z.H.U. Hai-Kui, W. Ya-Zhou, Q. Lei, Z. Hong-Qing, S.U.N. Qing-Lei, J Inorg Mater. 31, 812 (2016)

    Article  Google Scholar 

  14. Q. Sun, H. Zhou, H. Zhu, H. Qi, L. Hu, Z. Yue, J. Mater. Sci. Mater. Electron. 27, 7750 (2016). https://doi.org/10.1007/s10854-016-4762-4

    Article  CAS  Google Scholar 

  15. L. Zhang, Y. Chang, M. Xin, L. Ren, X. Luo, H. Zhou, J. Mater. Sci. Mater. Electron. 30, 491 (2018). https://doi.org/10.1007/s10854-018-0314-4

    Article  CAS  Google Scholar 

  16. H. Zhu, Z. Cui, C. Shen, J. Mater. Sci. Mater. Electron. 27, 177 (2015). https://doi.org/10.1007/s10854-015-3734-4

    Article  CAS  Google Scholar 

  17. L.Z. Wang, L.X. Wang, Z.F. Wang, B.Y. Huang, Q.T. Zhang, Z.X. Fu, J. Mater. Sci. Mater. Electron. 26, 9026 (2015). https://doi.org/10.1007/s10854-015-3586-y

    Article  CAS  Google Scholar 

  18. Q. Sun, H. Zhou, X. Luo, L. Hu, L. Ren, Ceram. Int. 42, 12306 (2016). https://doi.org/10.1016/j.ceramint.2016.05.002

    Article  CAS  Google Scholar 

  19. D. Pamu, G.L.N. Rao, K.C.J. Raju, Adv. Appl. Ceram. 106, 202 (2007). https://doi.org/10.1179/174367607x178157

    Article  CAS  Google Scholar 

  20. A. Ioachim, M.G. Banciu, M.I. Toacsen, L. Nedelcu, D. Ghetu, H.V. Alexandru, C. Berbecaru, A. Dutu, G. Stoica, Appl. Surf. Sci. 253, 335 (2006). https://doi.org/10.1016/j.apsusc.2006.06.006

    Article  CAS  Google Scholar 

  21. J.H. Jean, S.C. Lin, J. Am. Ceram. Soc. 83, 1417 (2000). https://doi.org/10.1111/j.1151-2916.2000.tb01404.x

    Article  CAS  Google Scholar 

  22. Y.-J. Gu, Q.-F. Wang, Q. Li, J.-L. Huang, L.-H. Li, M. Chen, S. Gao, B.-H. Kim, J. European Ceram. Soc. 41, 7689 (2021). https://doi.org/10.1016/j.jeurceramsoc.2021.08.011

    Article  CAS  Google Scholar 

  23. H.P. Hakki, P.D. Coleman, IEEE. Trans. Microw. Theory. Tech. 8, 402 (1960). https://doi.org/10.1109/TMTT.1960.1124749

    Article  Google Scholar 

  24. W.E. Courtney, IEEE. Microw. Theory. Tech. 18, 476 (1970). https://doi.org/10.1109/TMTT.1970.1127271

    Article  Google Scholar 

  25. W.C. Lee, J. Mater. Sci. 32, 6657 (1997). https://doi.org/10.1023/a:1018656521010

    Article  CAS  Google Scholar 

  26. M.G. Brik, I.V. Kityk, J. Phys. Chem. Solids. 80, 119 (2015). https://doi.org/10.1016/j.jpcs.2015.02.002

    Article  CAS  Google Scholar 

  27. K.H. Yoon, Y.S. Kim, E.S. Kim, J. Mater. Res. 10, 2085 (1995). https://doi.org/10.1557/jmr.1995.2085

    Article  CAS  Google Scholar 

  28. M. Mori, J. Electrochem. Soc. 152, A732 (2005). https://doi.org/10.1149/1.1864312

    Article  CAS  Google Scholar 

  29. L. Hamzioui, F. Kahoul, A.J.E.P. Boutarfaia, Energy Procedia J 74, 198 (2015). https://doi.org/10.1016/j.egypro.2015.07.577

    Article  CAS  Google Scholar 

  30. F. Vasiliu, S. Moisa, D. Grozea, C. Bunescu, J. Mater. Sci. 29, 3337 (1994). https://doi.org/10.1007/bf00356682

    Article  CAS  Google Scholar 

  31. F. Shi, J. Yang, Q. Liu, Z.M. Qi, H.Q. Sun, Mater. Chem. Phys. 200, 9 (2017). https://doi.org/10.1016/j.matchemphys.2017.06.059

    Article  CAS  Google Scholar 

  32. Z. Wang, H.N. Chen, T. Wang, Y.J. Xiao, W.W. Nian, J.H. Fan, J. Eur. Ceram. Soc. 38, 3847 (2018). https://doi.org/10.1016/j.jeurceramsoc.2018.04.026

    Article  CAS  Google Scholar 

  33. J. Sheen, Z.W. Hong, C.W. Su, H.C. Chen, Prog. Electromagn. Res. 100, 13 (2010). https://doi.org/10.2528/pier09091706

    Article  Google Scholar 

  34. R. Muhammad, Y. Iqbal, J. Mater. Sci. 51, 2958 (2016). https://doi.org/10.1007/s10853-015-9604-x

    Article  CAS  Google Scholar 

  35. E.S. Kim, S.J. Kim, Ferroelectrics 388, 93 (2009). https://doi.org/10.1080/00150190902965661

    Article  CAS  Google Scholar 

  36. W.S. Kim, J.H. Kim, J.H. Kim, K.H. Hur, J.Y. Lee, Mater. Chem. Phys. 79, 204 (2003). https://doi.org/10.1016/s0254-0584(02)00267-5

    Article  CAS  Google Scholar 

  37. F. Gheorghiu, L. Padurariu, M. Airimioaei, L. Curecheriu, C. Ciomaga, C. Padurariu, C. Galassi, L. Mitoseriu, J. Am. Ceram. Soc. 100, 647 (2017). https://doi.org/10.1111/jace.14587

    Article  CAS  Google Scholar 

  38. C.L. Zhao, J.G. Wu, A.C.S. Appl, Mater. Interfaces. 10, 3680 (2018). https://doi.org/10.1021/acsami.7b18356

    Article  CAS  Google Scholar 

  39. W. Cai, C.L. Fu, J.C. Gao, X.Y. Chen, Q.A. Zhang, Integr. Ferroelectr. 113, 83 (2009). https://doi.org/10.1080/10584581003785393

    Article  CAS  Google Scholar 

  40. L.Y. Shen, M.J. Liu, X.Z. Liu, B. Li, Mater. Res. Bull. 42, 2048 (2007). https://doi.org/10.1016/j.materresbull.2007.02.001

    Article  CAS  Google Scholar 

  41. W.R. Manning, O. Hunter, F.W. Calderwood, D.W. Stacy, J. Am. Ceram. Soc. 55, 342 (2010). https://doi.org/10.1111/j.1151-2916.1972.tb11306.x

    Article  Google Scholar 

Download references

Acknowledgements

This work was financed by Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the National Natural Science Foundation of China (Grant No. 52102089), and Key Research and Development Program of Zhejiang Province (Grant No. 2020C0112, 2021C01092)

Funding

This work was financed by Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the National Natural Science Foundation of China (Grant No. 52102089), and Key Research and Development Program of Zhejiang Province (Grant Nos. 2020C0112, 2021C01092).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. XZ and CL contributed to the conception of this study, performed the experiment, analyzed the data, and wrote the manuscript. YL, YS, XL, QX, and HZ help perform the analysis with constructive discussions. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hongqing Zhou.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Li, C., Lu, Y. et al. Microstructure and microwave dielectric properties of multi-oxide-doped (Zr, Sn)TiO4 ceramics. J Mater Sci: Mater Electron 33, 22153–22161 (2022). https://doi.org/10.1007/s10854-022-08994-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08994-0

Navigation