Skip to main content

Advertisement

Log in

Studies on structural and optical behavior of nanoporous potassium-substituted magnesium ferrite nanomaterials, and their application as a hydroelectric cell

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In recent years, alkali metal substituted spinel magnesium ferrites have been considered as potential materials for the fabrication of hydroelectric cells for the generation of green electricity without using any electrolyte. The purpose of potassium substitution was to observe the crystallite size variation, stretching molecular bonds, micro strain, porosity, defect centres, the surface morphology and HEC behavior of the prepared ferrites as monovalent potassium leads to occupying the octahedral site of Fe and Mg, which acts as reactive site for absorption and dissociation of the water molecule. The crystallite size and porosity of entire samples Mg1−xKxFe2O4 (x = 0.0–0.4) were found using Scherer’s equation between 11.15 and 36.20 nm and 22–53%, respectively, in XRD analysis, which decreased with the increase in alkali metal content. This decrease in lattice constant and unit cell volume may have been due to the compressive stress developed within the crystal structure, resulting in the negative strain as evident from WH plot. Rietveld refinement was executed for pure and highest doped samples from the available XRD data to achieve the refined diffraction parameters. The FTIR analysis revealed the shift of molecular bands towards lower wavenumbers with the increase in K+ content. The SEM micrographs show agglomeration in the materials and porosity in the synthesized samples, and further, a decrease in grain size from 1.264 to 0.79 μm. The porous structure enhances the chemidissociation of water molecules followed by physisorption to generate the electric current. The PL spectra showed the emission wavelength between 275 and 400 nm, which indicates the presence of oxygen vacancies, leading to the chemidissociation of water molecules. Nanoparticles of the compositions have been investigated for hydroelectric cell application. The voltage–current characteristics performance of all the compositions fabricated as hydroelectric cells reveals the offload current and open circuit voltage between 1.4 and 7.8 mA and 0.74 and 0.86 V, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. A. Nigam, S.J. Pawar, Structural, magnetic, and antimicrobial properties of zinc doped magnesium ferrite for drug delivery applications. Ceram. Int. l 46, 4058–4064 (2020)

    Article  Google Scholar 

  2. P.T. Thakur, R. Sharma, M. Kumar, S.C. Katyal, P.B. Barman, V. Sharma, P. Sharma, Structural, morphological, magnetic and optical study of co-precipitated Nd3+ doped Mn-Zn ferrite nanoparticles. J. Magn. Magn. Mater. 479, 317–325 (2019)

    Article  CAS  Google Scholar 

  3. W. Montha, W. Maneeprakorn, N. Buatong, I.M. Tang, W.P. On, Synthesis of doxorubicin-PLGA loaded chitosan stabilized (Mn, Zn) Fe2O4 nanoparticles: biological activity and pH-responsive drug release. Mater. Sci. Eng. C 59, 235–240 (2016)

    Article  CAS  Google Scholar 

  4. J. Wu, W. Jiang, Y. Shen, W. Jiang, R. Tian, Synthesis and characterization of mesoporous magnetic nanocomposites wrapped with chitosan gatekeepers for pH sensitive controlled release of doxorubicin. Mater. Sci. Eng. C 70, 132–140 (2017)

    Article  CAS  Google Scholar 

  5. A. Bigham, F. Foroughi, M. Motamedi, M. Rafienia, Multifunctional nanoporous magnetic zinc silicate-ZnFe2O4 core-shell composite for bone tissue engineering applications. Ceram. Int. 44, 11798–11806 (2018)

    Article  CAS  Google Scholar 

  6. G. Wang, F. Zhou, X. Li, J. Li, Y. Ma, J. Mu, Z. Zhang, H. Che, X. Zhang, Controlled synthesis of L-cysteine coated cobalt ferrite nanoparticles for drug delivery. Ceram. Int. 44, 13588–13594 (2018)

    Article  CAS  Google Scholar 

  7. E.M.M. Ramosn, V.G. Chavez, B.I. Macias-Martínez, C.M. Lopez-Badillo, L.A. García-Cerda, Synthesis and characterization of maghemite nanoparticles for hyperthermia applications. Ceram. Int. 41, 397–402 (2015)

    Article  Google Scholar 

  8. S. Praveen Kumar, K. Sakthipandi, R. Gayathiri, M. Sridhar Panday, V. Rajendran, Inorganic and nano-metal chemistry volume 47, 278–287 (2017)

    Article  Google Scholar 

  9. A. Hossain, P. Bandyopadhyay, A. Karmakar, A.A. Ullah, R.K. Manavalan, K. Sakthipandi, N. Alhokbany, S.M. Alshehri, J. Ahmed, Ceram. Int. 48, 7325–7343 (2022)

    Article  CAS  Google Scholar 

  10. D. Wei, Writable electrochemical energy source basedon graphene oxide. Sci. Rep. 5, 15173 (2015). https://doi.org/10.1038/srep15173

    Article  CAS  Google Scholar 

  11. N. Miljkovic, D.J. Preston, R. Enright, E.N. Wang, Jumping-droplet electrostatic energy harvesting. Appl. Phys. Lett. 105, 013111 (2014). https://doi.org/10.1063/1.4886798

    Article  CAS  Google Scholar 

  12. Q. Meng, Y. Kenayeti, D.D.L. Chung, Battery in the formof a cement-matrix composite. Cem. Concr. Compos. 32, 829 (2010). https://doi.org/10.1016/j.cemconcomp.2010.08.009

    Article  CAS  Google Scholar 

  13. A. Byrne, N. Holmes, B. Norton, Cement based batteriesand their potential for use in low power operations. Mater. Sci. Eng. 96, 012073 (2015). https://doi.org/10.1088/1757-899X/96/1/012073

    Article  Google Scholar 

  14. R.K. Kotnala, J. Shah, Green hydroelectrical energy source based on water dissociation by nanoporous ferrite. Int. J. Energy Res. 40, 1652–1661 (2016). https://doi.org/10.1002/er.3545

    Article  Google Scholar 

  15. J. Shah, K.C. Verma, A. Agarwal, R.K. Kotnala, Novel application of multiferroic compound for green electricity generation fabricated as hydroelectric cell. Mater. Chem. Phys. (2020). https://doi.org/10.1016/j.matchemphys.2019.122068

    Article  Google Scholar 

  16. S. Saini, J. Shah, R.K. Kotnala, K.L. Yadav, Nickel substituted oxygen deficient nanoporous lithium ferrite based green energy device hydroelectric cell. J. Alloy Compd. 827, 154334 (2020)

    Article  CAS  Google Scholar 

  17. R. Gupta, J. Shah, R. Singh, R.K. Kotnala, Nonphotocatalytic water splitting process to generate green electricity in alkali doped zinc oxide based hydroelectric cell. Energy Fuels 35, 9714–9726 (2021). https://doi.org/10.1021/acs.energyfuels.1c01164

    Article  CAS  Google Scholar 

  18. J. Shah, S. Jain, B. Gahtori, C. Sharma, R.K. Kotnala, Water splitting on the mesoporous surface and oxygen vacancies of iron oxide generates electricity by hydroelectric cell. Mater. Chem. Phys. (2021). https://doi.org/10.1016/j.matchemphys.2020.123981

    Article  Google Scholar 

  19. P. Kumar, S. Vashishth, I. Sharma, V. Verma, Porous SnO2 ceramic-based hydroelectric cells for green power generation. J. Mater. Sci.: Mater. Electron. 32, 1052–1060 (2021). https://doi.org/10.1007/s10854-020-04880-9

    Article  CAS  Google Scholar 

  20. R. Gupta, J. Shah, R. Das, S. Saini, R.K. Kotnala, Defect-mediated ionic hopping and green electricity generation in Al2 – xMgxO3-based hydroelectric cell. J. Mater. Sci. 56, 1600–1611 (2021). https://doi.org/10.1007/s10853-020-05280-4

    Article  CAS  Google Scholar 

  21. R.K. Kotnala, R. Gupta, A. Shukla, S. Jain, A. Gaur, J. Shah, Metal oxide based hydroelectric cell for electricity generation by water molecule dissociation without electrolyte/acid. J. Phys. Chem. C 122, 18841–18849 (2018). https://doi.org/10.1021/acs.jpcc.8b04999

    Article  CAS  Google Scholar 

  22. P. Heidari, S.M. Masoudpanah, Structural, magnetic and optical properties and photocatalytic activity of magnesium-calcium ferrite powders. J. Phys. Chem. Solids 148, 109681 (2021)

    Article  CAS  Google Scholar 

  23. A. Goldman, Modem Ferrite Technology, 2nd edn. (Springer, Pittsburgh, 2006)

    Google Scholar 

  24. H.M. Widatallah, F.A.S. Al-Mamari, N.A.M. Al-Saqri, A.M. Gismelseed, I.A. Al- Omari, T.M.H. Al-Shahumi, A.F. Alhaj, A.M. Abo, E. Ata, M.E. Elzain, Mossbauer and magnetic studies of Mg1þ2xSbxFe2–3xO4 spinel ferrites. Mater. Chem. Phys. 140, 97–103 (2013)

    Article  CAS  Google Scholar 

  25. Q. Lin, Y. He, J. Lin, F. Yang, L. Wang, J. Dong, Structural and magnetic studies of Mg substituted cobalt composite oxide catalyst Co1 – xMgxFe2O4. J. Magn. Magn. Mater. 469, 89–94 (2019)

    Article  CAS  Google Scholar 

  26. S.B. Somvanshi, S.R. Patade, D.D. Andhare, S.A. Jadhav, M.V. Khedkar, P.B. Kharat, P.P. Khirade, K.M. Jadhav, Hyperthermic evaluation of oleic acid coated nano-spinel magnesium ferrite: enhancement via hydrophobic-to-hydrophilic surface transformation. J. Alloy Compd. 835, 155422 (2020)

    Article  CAS  Google Scholar 

  27. T. Ajeesha, A. Ashwini, A. Mary George, J. Manikandan, Y. Arul Mary, M.A. Slimani, A. Almessiere, Baykal, Nickel substituted MgFe2O4 nanoparticles via co-precipitation method for photocatalytic applications. Phys. B: Condens. Matter 606, 412660 (2021)

    Article  CAS  Google Scholar 

  28. B.D. Cardoso, A. Rodrigues, B.G. Almeida, C.O. Amorim, V.S. Amaral, E. Castanheira, P. Coutinho, Stealth magneto liposomes based on calcium-substituted magnesium ferrite nanoparticles for curcumin transport and release. Int. J. Mol. Sci. 21, 3641 (2020)

    Article  CAS  Google Scholar 

  29. A. Lagashetty, A. Pattar, S.K. Ganiger, Heliyon (2019). https://doi.org/10.1016/j.heliyon.2019.e01760

    Article  Google Scholar 

  30. E.E. Ateia, A.A.H. El-Bassuony, G. Abdellatif et al., The impact of Ni substitution on the structural and magnetic properties of Mg nano-ferrite. Silicon 10, 1687–1696 (2018)

    Article  CAS  Google Scholar 

  31. E. Fantozzi, E. Rama, C. Calvio, B. Albini, P. Galinetto, M. Bini, Silver doped magnesium ferrite nanoparticles: physico-chemical characterization and antibacterial activity. Materials 14, 2859 (2021). https://doi.org/10.3390/ma1411285

    Article  CAS  Google Scholar 

  32. N. Okasha, Influence of silver doping on the physical properties of Mg ferrites. J. Mater. Sci. 43, 4192–4197 (2008)

    Article  CAS  Google Scholar 

  33. S.B. Das, V. Kumar, M.M. Siddiqui, N. Kumar, R.K. Singh, R. Kumar, Structural characterization and investigation of magneto-optic and multiferroic properties of nanostructured CoFe2O4 prepared by sol–gel derived facile chemical route. Mater. Today: Proc. (2022). https://doi.org/10.1016/j.matpr.2021.07.234

    Article  Google Scholar 

  34. V. Kumar, N. Kumar, S.B. Das, R.K. Singh, K. Sarkar, M. Kumar, Mater. Today: Proc. (2021). https://doi.org/10.1016/j.matpr.2021.05.215

    Article  Google Scholar 

  35. K. Sarkar, V. Kumar, S. Mukherjee, J. Mater. Sci.: Mater. Electron. 31, 14314–14321 (2020)

    CAS  Google Scholar 

  36. K. Sarkar, V. Kumar, S.B. Das, M. Kumar, A. Manash, C. Biswas, S. Mukherjee, Mater. Today: Proc. 44, 2459–2465 (2021)

    CAS  Google Scholar 

  37. K. Sarkar, V. Kumar, S. Bhushan Das, M. Kumar, R. Srivastava, Mater. Today: Proc. (2021). https://doi.org/10.1016/j.matpr.2021.02.476

    Article  Google Scholar 

  38. S. Bhushan Das, R.K. Singh, V. Kumar, N. Kumar, S. Kumar, Mater. Today: Proc. (2021). https://doi.org/10.1016/j.matpr.2021.04.001

    Article  Google Scholar 

  39. K.K. Chattopadhyay, A. Banerjee, Introduction to Nanoscience and Nanotechnology, (PHI Learning, 2009). ISBN:9788120336087

  40. S. Saini, K.L. Yadav, J. Shah, R.K. Kotnala, ACS Appl. Energy Mater. (2022). https://doi.org/10.1021/acsaem.2c00708

    Article  Google Scholar 

  41. T.K. Pathak, N.H. Vasoya, V.K. Lakhani, K.B. Modi, Structural and magnetic phase evolution study on needle-shaped nanoparticles of magnesium ferrite. Ceram. Int. 36, 275–281 (2010)

    Article  CAS  Google Scholar 

  42. N.T. To Loan, N.T. Hien Lan, N.T. Thuy Hang, N.Q. Hai, D.T. Tu Anh, Vu. ThiHau, L.V. Tan, T.V. Tran, CoFe2O4 nanomaterials: effect of annealing temperature on characterization, magnetic, photocatalytic, and photo-fenton properties. Processes 7, 885 (2019)

    Article  Google Scholar 

  43. H.Q. Alijani, S. Iravani, S. Pourseyedi et al., Biosynthesis of spinel nickel ferrite nanowhiskers and their biomedical applications. Sci. Rep. 11, 17431 (2021)

    Article  CAS  Google Scholar 

  44. S. Rizwan, M. Umar, Z.U. Babar, S.U. Awan, M.A. ur Rehman, Selenium enriched flower-like of bismuth ferrite nanosheets assembly with associated magnetic properties. AIP Adv. 9, 055025 (2019)

    Article  Google Scholar 

  45. A. Khan, Z. Valicsek, O. Horváth, Synthesis, characterization and application of iron (II) doped copper ferrites (CuII(x)FeII(1–x)FeIII2O4) as novel heterogeneous photo-fenton catalysts. Nanomaterials. 10, 921 (2020)

    Article  CAS  Google Scholar 

  46. T.E.P. Alves, H.V.S. Pessoni, A. Franco Jr., The effect of Y3+ substitution on the structural, optical band-gap, and magnetic properties of cobalt ferrite nanoparticles. Phys. Chem. Chem. Phys. 19, 16395–16405 (2017)

    Article  CAS  Google Scholar 

  47. M. Shakil, U. Inayat, M.I. Arshad, G. Nabi, N.R. Khalid, N.H. Tariq, A. Shah, M.Z. Iqbal, Influence of zinc and cadmium co-doping on optical and magnetic properties of cobalt ferrites. Ceram. Int. 46, 7767–7773 (2020)

    Article  CAS  Google Scholar 

  48. N. Singh, J. Bamne, C.C. Jana, A. Malhosia, K. Taiwade, V. Chandel, F.Z. Haque, Mater. Today: Proc. (2022). https://doi.org/10.1016/j.matpr.2022.05.192]

    Article  Google Scholar 

  49. C. Pratapkumar, S.C. Prashantha, H. Nagabhushana, M.R. Anilkumar, C.R. Ravikumar, H.P. Nagaswarupa, D.M. Jnaneshwara, White light emitting magnesium aluminate nanophosphor: near ultra violet excited photoluminescence, photometric characteristics and its UV photocatalytic activity. J. Alloy Compd. 728, 1124–1138 (2017)

    Article  CAS  Google Scholar 

  50. R.K. Kotnala, J. Shah, Lithium-substituted magnesium ferrite material based hydroelectric cell and process for preparation thereof, US 2016/0285121 A1 (2016)

  51. E. Codorniu-HernAndez, P.G. Kusalik, Probing the mechanisms of proton transfer in liquid water:fig. 1. Proc. Natl. Acad. Sci. USA 110, 13697-e13698 (2013)

    Article  CAS  Google Scholar 

  52. S.H. Chan, K.A. Khor, Z.T. Xia, A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness. J. Power Sources 93, 130e140 (2001). https://doi.org/10.1016/S0378-7753(00)00556-5

    Article  Google Scholar 

  53. A.O. Turky, M.M. Rashad, A.M. Hassan, E.M. Elnaggar, M. Bechelany, Tailoring optical, magnetic and electric behavior of lanthanum strontium manganite La1–xSrxMnO3 (LSM) nanopowders prepared via a co-precipitation method with different Sr2+ion contents. Rsc Adv. 6(22), 17980–17986 (2016)

    Article  CAS  Google Scholar 

  54. A.O. Turkey, M.M. Rashad, A.M. Hassan, E.M. Elnaggar, M. Bechelany, Tuning the optical, electrical and magnetic properties Ba0.5Sr0.5TixM1−xO3 (BST) nanopowders. Phys. Chem. Chem. Phys. 19(9), 6878–6886 (2017)

    Google Scholar 

  55. A.O. Turky, M.M. Rashad, A.M. Hassan, E.M. Elnaggar, M. Bechelany, Optical, electrical and magnetic properties of lanthanum strontium manganite La1–xSrxMnO3 synthesized through the citrate combustion method. Phys. Chem. Chem. Phys. 19, 6878–6886 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Aryabhatta Center for Nanoscience and Nanotechnology, Aryabhatta Knowledge University under the Department of Higher Education, Govt. of Bihar for providing the sophisticated research facilities to execute this work.

Funding

No funding was provided for carring out this research.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by AM, RKS, VK, SBD, NK, JS and RKK. The first draft of the manuscript was written by AM and VK and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Rakesh Kumar Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manash, A., Singh, R.K., Kumar, V. et al. Studies on structural and optical behavior of nanoporous potassium-substituted magnesium ferrite nanomaterials, and their application as a hydroelectric cell. J Mater Sci: Mater Electron 33, 22103–22118 (2022). https://doi.org/10.1007/s10854-022-08978-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08978-0

Navigation