Skip to main content
Log in

Effective improvement of 2.0-µm and 4.1-µm mid-infrared emission in Tm3+/Ho3+-co-doped tellurite glasses

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Tm3+/Ho3+-co-doped tellurite glasses were fabricated by employing the high-temperature melting technology to achieve intense mid-infrared emission. X-ray diffractometer (XRD) figure proved the amorphous structure of the prepared specimens. The measured parameter ΔT (136 °C) > 120 °C indicates that the prepared tellurite glass specimen held the better thermal stability and crystallization resistance. By the 808-nm LD pumping, intense 1.8-µm fluorescence were obtained in Tm3+-single-doped tellurite glasses and strong 2.0-µm and 4.1-µm mid-infrared emission were also obtained in Tm3+/Ho3+-co-doped tellurite glasses, besides broadband mid-infrared fluorescence intensity was evidently enhanced with the appropriate Ho3+ concentration. For further research mid-infrared fluorescence properties of the prepared glasses, the energy transfer process between Ho3+ and Tm3+ ions were in detail discussed according to the suppression and enhancement of the fluorescence intensity under the different Ho3+ ion-doped concentration. Results indicated that the Tm3+/Ho3+-co-doped tellurite glasses had brilliant fluorescence performance, which might be ideal host material for ultra-broadband mid-infrared laser.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. T. Wu, W. Kong, M. Wang, Q. Wu, W. Chen, C. Ye, R. Hu, Compact hollow waveguide mid-infrared gas sensor for simultaneous measurements of ambient CO2 and water vapor. J. Light Technol. 38, 4580–4587 (2020)

    Article  CAS  Google Scholar 

  2. C.S. Rao, K.U. Kumar, P. Babu, C.K. Jayasankar, Optical properties of Ho3+ ions in lead phosphate glasses. Opt. Mater. 35, 102–107 (2012)

    Article  Google Scholar 

  3. H. Guan, X. Wang, R. Han, L. Yuan, S. Meng, High-resolution and -precision spectra of acetonitrile at the ν5-band for laser remote sensing. J. Quant. Spectrosc. Radiat. Transf. 255, 107254 (2020)

    Article  CAS  Google Scholar 

  4. J. Pisarska, M. Kuwik, A. Górny, M. Kochanowicz, J. Zmojda, J. Dorosz, D. Dorosz, M. Sitarz, W. Pisarski, Holmium doped barium gallo-germanate glasses for near-infrared luminescence at 2000 nm. J. Lumin. 215, 116625 (2019)

    Article  CAS  Google Scholar 

  5. J. Chen, Y. Tang, X. Yi, Y. Tian, S. Zhou, A novel redshift mechanism of Ce3+ emission in ZrO2–Ce:YAG composite phosphor ceramics. J. Eur. Ceram. Soc. 40, 5852–5858 (2020)

    Article  CAS  Google Scholar 

  6. J. He, H. Zhan, Z. Zhou, A. Zhang, A. Lin, Study on 2.0 µm fluorescence of Ho-doped water-free fluorotellurite glasses. Opt. Mater. 35, 2573–2576 (2013)

    Article  CAS  Google Scholar 

  7. F. Huang, J. Cheng, X. Liu, L. Hu, D. Chen, Ho3+/Er3+ doped fluoride glass sensitized by Ce3+ pumped by 1550 nm LD for efficient 2.0 μm laser applications. Opt. Express 22, 20924 (2014)

    Article  Google Scholar 

  8. W. Zhang, Q. Zhang, Q. Chen, Q. Qian, Z. Yang, J. Qiu, P. Huang, Y. Wang, Enhanced 2.0 µm emission and gain coefficient of transparent glass ceramic containing BaF2:Ho3+, Tm3+ nanocrystals. Opt. Express 17, 20952 (2009)

    Article  CAS  Google Scholar 

  9. W. Zhang, Q. Chen, Q. Zhang, Z. Jiang, Enhanced 2.0 µm emission in oxyfluoride glass-ceramics containing nanocrystals MF2 (MF3): Ho3+, Tm3+ (M = Ca, Ba, and La). J. Non-cryst. Solids 357, 2278–2281 (2011)

    Article  CAS  Google Scholar 

  10. X. Shen, G. Cheng, L. Zhang, W. Wei, Fabrication of a hybrid-cladding tellurite glass fiber doped with Tm3+ and Ho3+. J. Lumin. 227, 117540 (2020)

    Article  CAS  Google Scholar 

  11. W. Cao, F. Huang, T. Wang, R. Ye, R. Lei, Y. Tian, J. Zhang, S. Xu, 2.0 µm Emission of Ho3+ doped germanosilicate glass sensitized by non-rare-earth ion Bi: a new choice for 2.0 µm laser. Opt. Mater. 75, 695–698 (2018)

    Article  CAS  Google Scholar 

  12. Y. Hadeethi, M. Sayyed, S. Tijani, Gamma radiation attenuation properties of tellurite glasses: a comparative study. Nucl. Eng. Technol. 51, 2005–2012 (2019)

    Article  Google Scholar 

  13. G. Gao, G. Wang, C. Yu, J. Zhang, L. Hu, Investigation of 2.0 µm emission in Tm3+ and Ho3+ co-doped oxyfluoride tellurite glass. J. Lumin. 129, 1042–1047 (2009)

    Article  CAS  Google Scholar 

  14. J. Yuan, W. Wang, Y. Ye, T. Deng, Y. Huang, S. Gu, Y. Chen, P. Xiao, 2.0 µm Ultra broadband emission from Tm3+/Ho3+ co-doped gallium tellurite glasses for broadband light sources and tunable fiber lasers. Crystals 11, 190 (2021)

    Article  CAS  Google Scholar 

  15. Y. Zhu, X. Shen, M. Zhou, X. Su, J. Li, G. Yang, H. Shao, Y. Zhou, 2.0 µm Band emission enhancement and energy transfer in Ho3+/Yb3+/Er3+ tri-doped tellurite glasses. J. Lumin. 210, 28–37 (2019)

    Article  CAS  Google Scholar 

  16. M. Zhou, Y. Zhou, X. Su, Y. Zhu, Z. Zhou, P. Cheng, Around 2 μm fluorescence and energy transfer in Tm3+/Ho3+ co-doped tellurite glass. J. Non-cryst. Solids 481, 344–351 (2018)

    Article  CAS  Google Scholar 

  17. Q. Wang, J. Zhang, W. Dong, L. Liu, H. Wen, Q. Yao, J. Li, J. Wang, Preparation and spectral characteristics of Tm3+/Ho3+ co-doped TeO2–B2O3–BaO glass. RSC Adv. 9, 7078–7085 (2019)

    Article  CAS  Google Scholar 

  18. U.R. Rodriguez-Mendoza, E.A. Lalla, J.M. Caceres, F. Rivera-Lopez, V. Lavin, Optical characterization, 1.5 µm emission and IR-to-visible energy upconversion in Er3+-doped fluorotellurite glasses. J. Lumin. 131, 1239–1248 (2011)

    Article  CAS  Google Scholar 

  19. E.A. Lalla, U.R. Rodríguez-Mendoza, A.D. Lozano-Gorrín, A. Sanz-Arranz, F. Rull, V. Lavín, Nd3+-doped TeO2–PbF2–AlF3 glasses for laser applications. Opt. Mater. 51, 35–41 (2016)

    Article  CAS  Google Scholar 

  20. S.F. León-Luis, U.R. Rodríguez-Mendoza, E. Lalla, V. Lavín, Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass. Sens. Actuators B 158, 208–213 (2011)

    Article  Google Scholar 

  21. L. Han, J. Song, T. Liu, Y. Tang, Z. Luo, G. Chen, A. Lu, Crystallization kinetics and the dielectric properties of SrO–BaO–Nb2O5–B2O3 glass–ceramics. J. Electroceram. 43, 10–19 (2018)

    Article  Google Scholar 

  22. Z. Li, W. Fu, Y. Gao, C. Zhang, Broadband mid-infrared 2.0 µm emission in Yb3+/Ho3+ co-doped silicate–germanate glasses for mid-infrared fiber amplifiers. Opt. Eng. 59, 76101 (2020)

    CAS  Google Scholar 

  23. Y. Wang, C. Xu, Z. Zhang, C. Zheng, J. Pei, L. Sun, Enhanced 1–5 µm near- and mid-infrared emission in Ho3+/Yb3+ codoped TeO2–ZnF2 oxyfluorotellurite glasses. J. Rare Earths 38, 1044–1052 (2020)

    Article  CAS  Google Scholar 

  24. E.A. Lalla, M. Aznar, M. Konstantinidis, M.G. Daly, U.R. Rodríguez Mendoza, Polarized Raman analyzes of (RE3+) doped fluorotellurite glass and ceramics. Vib. Spectrosc. 103, 102934 (2019)

    Article  CAS  Google Scholar 

  25. T. Dong, J. Lin, C. Gu, P. Yao, L. Xu, Passively mode-locked cascaded Raman fiber laser in a linear cavity. Opt. Commun. 484, 126679 (2021)

    Article  CAS  Google Scholar 

  26. C. Yun, Z. Li, Y. Ping, X. Miao, C. Zhang, Up-conversion and 2 µm mid-infrared emission effective enhancements in Ho3+/Yb3+ co-doped tellurite glass. Optik 242, 167262 (2021)

    Article  CAS  Google Scholar 

  27. X. Gao, Y. Tian, Q. Liu, B. Li, W. Tang, J. Zhang, S. Xu, Broadband 2 μm emission characteristics and energy transfer mechanism of Ho3+ doped silicate–germanate glass sensitized by Tm3+ ions. Opt. Laser Technol. 111, 115–120 (2019)

    Article  CAS  Google Scholar 

  28. W. Wang, W. Zhang, L. Li, Y. Liu, D. Chen, Q. Qian, Q. Zhang, Spectroscopic and structural characterization of barium tellurite glass fibers for mid-infrared ultra-broad tunable fiber lasers. Opt. Mater. Express 6, 2095–2107 (2016)

    Article  CAS  Google Scholar 

  29. J. Żmojda, M. Kochanowicz, D. Dorosz, Low-phonon tellurite glass co-doped with Tm3+/Ho3+ ions for optical fiber technology. Photonics Lett. Pol. 6, 56–58 (2014)

    Google Scholar 

  30. C. Yun, C. Zhang, X. Miao, Z. Li, S. Lai, T. Sang, Ultra-broadband 4.1 μm mid-infrared emission of Ho3+ realized by the introduction of Tm3+ and Ce3+. J. Lumin. 239, 118368 (2021)

    Article  CAS  Google Scholar 

  31. L. Li, W. Wang, C. Zhang, J. Liu, Q. Zhang, Z. Jiang, Exploration of the new tellurite glass system for efficient 2 μm luminescence. J. Non-cryst. Solids 508, 15–20 (2019)

    Article  CAS  Google Scholar 

  32. C. Yun, C. Zhang, X. Miao, Z. Li, Y. Ping, Effective enhancement on mid-infrared fluorescence emission of Ho3+/Yb3+ doped tellurite glass introduced Ag nanoparticles. Opt. Mater. 115, 111025 (2021)

    Article  CAS  Google Scholar 

  33. D.E. McCumber, Theory of phonon-terminated optical masers. Phys. Rev. 134, 299–306 (1964)

    Article  Google Scholar 

  34. G. Tang, X. Wen, Q. Qian, T. Zhu, W. Liu, M. Sun, X. Chen, Z. Yang, Efficient 2.0 μm emission in Er3+/Ho3+ co-doped barium gallo-germanate glasses under different excitations for mid-infrared laser. J. Alloys Compd. 664, 19–24 (2016)

    Article  CAS  Google Scholar 

  35. R. Wanga, H. Zhao, M. Zhang, J. Zhang, S. Jia, J. Zhang, H. Peng, G. Brambilla, S. Wang, P. Wang, Enhancement mechanisms of Tm3+-codoping on 2 μm emission in Ho3+ doped fluoroindate glasses under 888 nm laser excitation. Ceram. Int. 46, 6973–6977 (2020)

    Article  Google Scholar 

  36. X. Zou, H. Toratani, Spectroscopic properties and energy transfers in Tm3+ singly- and Tm3+/Ho3+ doubly-doped glasses. J. Non-cryst. Solids 195, 113–124 (1996)

    Article  CAS  Google Scholar 

  37. R. Cao, Y. Lu, Y. Tian, F. Huang, S. Xu, J. Zhang, Spectroscopy of thulium and holmium co-doped silicate glasses. Opt. Mater. Express 6, 2252–2263 (2016)

    Article  CAS  Google Scholar 

  38. E. Fei, D. Zhang, R. Ye, Y. Hua, S. Xu, F. Huang, Controllable optical properties between Ho3+: 5I75I8 and Tm3+: 3F43H6 transitions in germanosilicate glasses. Infrared Phys. Technol. 94, 156–160 (2018)

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the Shanghai Sailing Program from Science and Technology Committee of Shanghai (No. 21YF1416200).

Author information

Authors and Affiliations

Authors

Contributions

CZ participated in the conceptualization, methodology, and writing of the manuscript. CZ contributed to experiment and supervision. SL participated in the funding and investigation.

Corresponding author

Correspondence to Chaomin Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Zhang, C. & Lai, S. Effective improvement of 2.0-µm and 4.1-µm mid-infrared emission in Tm3+/Ho3+-co-doped tellurite glasses. J Mater Sci: Mater Electron 33, 21864–21873 (2022). https://doi.org/10.1007/s10854-022-08973-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08973-5

Navigation