Skip to main content
Log in

Structural, physical, and optical characterization of (Nd3+/Eu3+)-doped zinc-rich silica–borate glasses

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, zinc–silica–borate glass structures doped with rare earth (RE) oxides Eu2O3 and Nd2O3 were synthesized with classical melting–quenching technique. 60ZnO–10SiO2–(30 – x)B2O3:xRE (x = 0, 0.5, 1, 1.5 mol%) composition was chosen as the structure. The doping effect of two different rare earth oxides (individually) at different ratios was investigated according to the structural, physical, and optical properties of the glass structure. Structural properties of the synthesized glasses were determined with Fourier transform infrared (FTIR) device, and densities (ρ) and molar volumes (Vm) of the glasses were measured with Archimedes method, and optical properties were determined with UV–Visible (UV–Vis-NIR) device. FTIR results show that BO3 units increased in all RE-doped glasses. While densities of the synthesized glasses varied between 3.755 and 3.941 g cm− 3, indirect bandgaps varied between 3.219 and 3.645 eV. The glass with the highest transmittance was the 1% Eu2O3-doped glass with a transmittance of 84%. While band edges shifted slightly toward short wavelengths in glasses doped with Nd2O3, they shifted to longer wavelengths in glasses doped with Eu2O3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

This manuscript has no associated data. All data generated or analyzed during this study are included in this published article.

References

  1. A. Manjeet, R. Kumar, Anu, N. Deopa, A. Kumar, R.P. Chahal, S. Dahiya, R. Punia, A.S. Rao, Structural, thermal, optical and luminescence properties of Dy3+ ions doped Zinc Potassium Alumino Borate glasses for optoelectronics applications. J. Non-cryst. Solids 588, 121613 (2022). https://doi.org/10.1016/j.jnoncrysol.2022.121613

    Article  CAS  Google Scholar 

  2. V. Virginie Moizan, J. Nazabal, P. Troles, J.-L. Houizot, J.-L. Adam, R. Doualan, F. Moncorgé, G. Smektala, Gadret, S. Pitois, G. Canat, Er3+-doped GeGaSbS glasses for mid-IR fibre laser application: synthesis and rare earth spectroscopy. Opt. Mater. 31(1), 39–46 (2008). https://doi.org/10.1016/j.optmat.2008.01.005

    Article  CAS  Google Scholar 

  3. K. Sriramulu, K. Swapna, M. Venkateswarlu, S. Mahamuda, A.S. Rao, Effective sensitization of Yb3+ ions on Yb3+/Nd3+ co-doped fluoroborate glasses for NIR luminescence applications. Opt. Mater. 121, 111592 (2021). https://doi.org/10.1016/j.optmat.2021.111592

    Article  CAS  Google Scholar 

  4. J.H. Campbell, T.I. Suratwala, Nd-doped phosphate glasses for high-energy/high-peak-power lasers. J. Non-cryst. Solids 263–264, 318–341 (2000). https://doi.org/10.1016/S0022-3093(99)00645-6

    Article  Google Scholar 

  5. S. Ibrahim, F.I. El-Agawany, Y.S. Rammah, E.M. Ahmed, A.A. Ali, ZnO-Bi2O3-B2O3 glasses doped with rare earth oxides: synthesis, physical, structural characteristics, neutron and photon attenuation attitude. Optik 243, 167414 (2021). https://doi.org/10.1016/j.ijleo.2021.167414

    Article  CAS  Google Scholar 

  6. C.B. Gorller-Walrand, Spectral Intensities of F-F Transitions in Handbook on the Physics and Chemistry of Rare Earths (North-Holland, Amsterdam, 1981)

    Google Scholar 

  7. F. lodie Nicoleau, S. Angeli, T. Schuller, P. Charpentier, Jollivet, Mélanie Moskura, Rare-earth silicate crystallization in borosilicate glasses: effect on structural and chemical durability properties. J. Non-cryst. Solids 438, 37–48 (2016). https://doi.org/10.1016/j.jnoncrysol.2016.02.003

    Article  CAS  Google Scholar 

  8. P. Manasa, F. Ran, Ch Basavapoornima, S.R. Depuru, C.K. Jayasankar, Optical characteristics of (Eu3+,Nd3+) co-doped leadfluorosilicate glasses for enhanced photonic device applications. J. Lumin. 223, 117210 (2020). https://doi.org/10.1016/j.jlumin.2020.117210

    Article  CAS  Google Scholar 

  9. A. Madhu, B. Eraiah, P. Manasa, N. Srinatha, Nd3+-doped lanthanum lead boro-tellurite glass for lasing and amplification applications. Opt. Mater. 75, 357–366 (2018). https://doi.org/10.1016/j.optmat.2017.10.037

    Article  CAS  Google Scholar 

  10. P. Manasa, T. Srihari, Ch Basavapoornima, A.S. Joshi, C.K. Jayasankar, Spectroscopic investigations of Nd3+ ions in niobium phosphate glasses for laser applications. J. Lumin. 211, 233–242 (2019). https://doi.org/10.1016/j.jlumin.2019.03.023

    Article  CAS  Google Scholar 

  11. S. Gopi, S.K. Jose, A. George et al., Luminescence and phonon sideband analysis of Eu3+ doped alkali fluoroborate glasses for red emission applications. J. Mater. Sci.: Mater. Electron. 29, 674–682 (2018). https://doi.org/10.1007/s10854-017-7961-8

    Article  CAS  Google Scholar 

  12. M.S. Sajna, S. Gopi, V.P. Prakashan, M.S. Sanu, C. Joseph, P.R. Biju, N.V. Unnikrishnan, Spectroscopic investigations and phonon side band analysis of Eu3+-doped multicomponent tellurite glasses. Opt. Mater. 70, 31–40 (2017). https://doi.org/10.1016/j.optmat.2017.04.064

    Article  CAS  Google Scholar 

  13. A.P. Carmo, M.J.V. Bell, Z.M. Da Costa, V. Anjos, L.C. Barbosa, E.F. Chillcce, J.M. Giehl, W.M. Pontuschka, Optical and spectroscopic properties of soda lime aluminO–Silicate glasses doped with erbium and silver. Opt. Mater. 33(12), 1995–1998 (2011). https://doi.org/10.1016/j.optmat.2011.04.039

    Article  CAS  Google Scholar 

  14. H.M. Elsaghier, M.A. Azooz, N.A. Zidan, W. Abbas, A. Okasha, S.Y. Marzouk, Spectroscopic and optical investigations on Er3+ ions doped alkali cadmium phosphate glasses for laser applications. J. Non-cryst. Solids 588, 121616 (2022). https://doi.org/10.1016/j.jnoncrysol.2022.121616

    Article  CAS  Google Scholar 

  15. Y.K. Sharma, S.S.L. Surana, R.K. Singh, R.P. Dubedi, Spectral studies of erbium doped soda lime silicate glasses in visible and near infrared regions. Opt. Mater. 29, 598–604 (2007). https://doi.org/10.1016/j.optmat.2005.10.013

    Article  CAS  Google Scholar 

  16. S. Jianhu Yang, N. Dai, L. Dai, Hu Wen, Lili, Z. Jiang, Investigation on nonradiative decay of 4I13/2→4I15/2 transition of Er3+-doped oxide glasses. J. Lumin. 106(1), 9–14 (2004). https://doi.org/10.1016/S0022-2313(03)00128-5

    Article  CAS  Google Scholar 

  17. H. Lin, E.Y.B. Pun, X.R. Liu, Er3+-doped Na2O·Cd3Al2Si3O12 glass for infrared and upconversion applications. J. Non-Cryst. Solids 283, 27–33 (2001). https://doi.org/10.1016/S0022-3093(01)00488-4

    Article  CAS  Google Scholar 

  18. K.A. Naseer, K. Marimuthu, K.A. Mahmoud, M.I. Sayyed, The concentration impact of Yb3+ on the bismuth boro-phosphate glasses: physical, structural, optical, elastic, and radiation-shielding properties. Radiat. Phys. Chem. 188, 109617 (2021). https://doi.org/10.1016/j.radphyschem.2021.109617

    Article  CAS  Google Scholar 

  19. D. Zhang, H. Hao, Y. Luo, Z. Yao, M. Cao, H. Liu, Effect of ZnO doping on the microstructure and microwave dielectric properties of 0.2CaTiO3-0.8(Li0.5Sm0.5)TiO3 ceramics. Ceram. Int. 48, 22726–22732 (2022). https://doi.org/10.1016/j.ceramint.2022.04.023

    Article  CAS  Google Scholar 

  20. J.-M. Wu, H.-L. Huang, Microwave properties of zinc, barium and lead borosilicate glasses. J. Non-Cryst. Solids 260, 116–124 (1999). https://doi.org/10.1016/S0022-3093(99)00513-X

    Article  CAS  Google Scholar 

  21. C.C. Regina, A.S. Monteiro, Andreia, M.R.A. Lopes, Maria, P.B. Lima, João, Veiga, Thermal characteristics and crystallization behavior of zinc borosilicate glasses containing Nb2O5. J. Non-cryst. Solids 491, 124–132 (2018). https://doi.org/10.1016/j.jnoncrysol.2018.03.054

    Article  CAS  Google Scholar 

  22. B.H. Seo, H. Kim, D.H. Suh, Effects of alkali and alkaline-earth oxides on thermal, dielectrical, and optical properties of zinc borate glasses for transparent dielectric. Met. Mater. Int. 15, 983–987 (2009). https://doi.org/10.1007/s12540-009-0983-x

    Article  CAS  Google Scholar 

  23. R.K. Samudrala, S. Patel, V. Penugurthi, B. Manavathi, A. Azeem, P, In vitro studies of B2O3–SiO2–Na2O–CaO–ZnO bioactive glass system. J. Non-cryst. Solids 574, 121164 (2021). https://doi.org/10.1016/j.jnoncrysol.2021.121164

    Article  CAS  Google Scholar 

  24. L. Jia Wang, B. Zhao, Q. Cui, X. Jin, Zhang, A new strategy to realize phase structure and morphology of BaTiO3 nanowires controlled in ZnO-B2O3-SiO2 glass. Mater. Sci. Eng. B 262, 114785 (2020). https://doi.org/10.1016/j.mseb.2020.114785

    Article  CAS  Google Scholar 

  25. Y.N. Ko, D.S. Jung, J.H. Kim, Y.J. Hong, Y.C. Kang, Low-temperature sintering characteristics of nanO–Sized BaNd2Ti5O14 and Bi2O3–B2O3–ZnO–SiO2 glass powders prepared by gas-phase reactions. Mater. Res. Bull. 46, 2112–2116 (2011). https://doi.org/10.1016/j.materresbull.2011.06.031

    Article  CAS  Google Scholar 

  26. M.-Y. Chen, J. Juuti, H. Jantunen, Sintering behavior, microstructure and dielectric performance of BaTiO3 with 60–65 wt% addition of B2O3-Bi2O3-SiO2-ZnO glass. J. Alloys Compd. 737, 392–397 (2018). https://doi.org/10.1016/j.jallcom.2017.12.099

    Article  CAS  Google Scholar 

  27. M.-Y. Chen, J. Juuti, C.-S. Hsi, H. Jantunen, Sintering behavior and characteristics study of BaTiO3 with 50wt% of B2O3-Bi2O3-SiO2-ZnO glass. J. Eur. Ceram. Soc. 37(4), 1495–1500 (2017). https://doi.org/10.1016/j.jeurceramsoc.2016.10.036

    Article  CAS  Google Scholar 

  28. L. Mitang Wang, M. Fang, A. Li, X. Li, Y. Zhang, Z. Hu, R. Liu, Dongol, Glass transition and crystallization of ZnO-B2O3-SiO2 glass doped with Y2O3. Ceram. Int. 45(4), 4351–4359 (2019). https://doi.org/10.1016/j.ceramint.2018.11.110

    Article  CAS  Google Scholar 

  29. G. Ravi Kumar, S. Uday Baskar, M.C. Rao, Role of Mn2+ ions on optical and luminescent properties of CaF2–Y2O3–ZnO–B2O3–SiO2 glasses. Results Phys. 10, 546–557 (2018). https://doi.org/10.1016/j.rinp.2018.05.046

    Article  Google Scholar 

  30. L. Mitang Wang, M. Fang, Z. Li, Y. Liu, X. Hu, W. Zhang, R. Deng, Dongol, Phase separation and crystallization of La2O3 doped ZnO-B2O3-SiO2 glass. J. Rare Earths 37, 767–772 (2019). https://doi.org/10.1016/j.jre.2018.09.013

    Article  CAS  Google Scholar 

  31. M.S. Bahra Mohammed, H. Jaafar, Wagiran, Effect of Cu2O on the thermoluminescence properties of ZnO-B2O3–SiO2 glass sample. J. Lumin. 190, 228–233 (2017). https://doi.org/10.1016/j.jlumin.2017.05.049

    Article  CAS  Google Scholar 

  32. K. Annapurna, A. Kumar, R.N. Dwivedi, NSooraj Hussain, S. Buddhudu, Fluorescence spectra of Cu+:ZnO–B2O3–SiO2 glass. Mater. Lett. 45, 23–26 (2000). https://doi.org/10.1016/S0167-577X(00)00068-9

    Article  CAS  Google Scholar 

  33. M. Mohapatra, R.K. Mishra, C.P. Kaushik, S.V. Godbole, Photoluminescence investigations of rare earth (Eu and Gd) incorporated nuclear waste glass. Phys. B: Condens. Matter 405, 4790–4795 (2010). https://doi.org/10.1016/j.physb.2010.09.003

    Article  CAS  Google Scholar 

  34. M.K. Halimah, R.A. Tafida, K.T. Chan, F.D. Muhammad, A comparative study of the experimental and the theoretical elastic data of silver oxide incorporated zinc tellurite glass system doped with Sm3+ Nps ions. Optik 238, 166536 (2021)

    Article  CAS  Google Scholar 

  35. S.Y. Moustafa, M.R. Sahar, S.K. Ghoshal, Spectroscopic attributes of Er3+ ions in antimony phosphate glass incorporated with Ag nanoparticles: Judd-Ofelt analysis. J. Alloys Compd. 712, 781–794 (2017). https://doi.org/10.1016/j.jallcom.2017.04.106

    Article  CAS  Google Scholar 

  36. P. Suthanthirakumar, S. Arunkumar, K. Marimuthu, Investigations on the spectroscopic properties and local structure of Eu3+ ions in zinc telluro-fluoroborate glasses for red laser applications. J. Alloys Compd. 760, 42–53 (2018). https://doi.org/10.1016/j.jallcom.2018.05.153

    Article  CAS  Google Scholar 

  37. S.D. Vinod Hegde, I. Kamath, M.I. Kebaili, K.N. Sayyed, C.S. Sathish, A.G. Dwaraka Viswanath, P. Pramod, K. Ramesh, G. Keshavamurthy, G. Devarajulu, Jagannath, Photoluminescence, nonlinear optical and gamma radiation shielding properties of high concentration of Eu2O3 doped heavy metal borate glasses. Optik 251, 168433 (2022). https://doi.org/10.1016/j.ijleo.2021.168433

    Article  CAS  Google Scholar 

  38. B.. Shashidhar, S.. Rahman, Spectroscopic and physical properties of Bi2O3-B2O3-ZnO-Li2O glasses. Int. Sch. Res. Netw. ISRN Spectrosc. (2012). https://doi.org/10.5402/2012/634571

    Article  Google Scholar 

  39. J. Mitang Wang, M. CHeng, F. Li, He, Raman spectra of soda–lime–silicate glass doped with rare earth. Physica B 406, 3865–3869 (2011). https://doi.org/10.1016/j.physb.2011.07.014

    Article  CAS  Google Scholar 

  40. C. Li, C. Wang, Z. Li, Z. Cao, Y. Xie, M. Xue, J. Zhao, Preparation of ZnO Nanoparticle/Acrylic Resin Superhydrophobic Coating via Blending Method and Its Wear Resistance and Antibacterial Properties. Materials 14(14), 3775 (2021). https://doi.org/10.3390/ma14143775

    Article  CAS  Google Scholar 

  41. P.V. Ramakrishna, D.B.R.K. Murthy, D.L. Sastry, White-light emitting Eu3+ co-doped ZnO/Zn2SiO4:Mn2+ composite microphosphor. Spectrochim. Acta Part A 125, 234–238 (2014). https://doi.org/10.1016/j.saa.2014.01.110

    Article  CAS  Google Scholar 

  42. S.A. Al Rifai, B.A. Kulnitskiy, Microstructural and optical properties of europium-doped zinc oxide nanowires. J. Phys. Chem. Solids 74, 1733–1738 (2013). https://doi.org/10.1016/j.jpcs.2013.06.019

    Article  CAS  Google Scholar 

  43. R.S. Kirti Nanda, S. Kundu, D. Sharma, R. Mohan, N. Punia, Kishore, Study of vibrational spectroscopy, linear and non-linear optical properties of Sm3+ ions doped BaO–ZnO–B2O3 glasses. Solid State Sci. 45, 15–22 (2015). https://doi.org/10.1016/j.solidstatesciences.2015.04.008

    Article  CAS  Google Scholar 

  44. N. Kiran, Eu3+ ion doped sodium–lead borophosphate glasses for red light emission. J. Mol. Struct. 1065–1066, 93–98 (2014). https://doi.org/10.1016/j.molstruc.2014.02.047

    Article  CAS  Google Scholar 

  45. M.S. Gaafar, S.Y. Marzouk, H.A. Zayed, L.I. Soliman, A.H. Serag El-Deen, Structural studies and mechanical properties of some borate glasses doped with different alkali and cobalt oxides. Curr. Appl. Phys. 13(1), 152–158 (2013). https://doi.org/10.1016/j.cap.2012.07.007

    Article  Google Scholar 

  46. P. Limkitjaroenporn, J. Kaewkhao, P. Limsuwan, W. Chewpraditkul, Physical, optical, structural and gamma-ray shielding properties of lead sodium borate glasses. J. Phys. Chem. Solids 72, 245–251 (2011). https://doi.org/10.1016/j.jpcs.2011.01.007

    Article  CAS  Google Scholar 

  47. L. Guojun Gao, Hu Huiyan, F.G. Wang, K. Li, S. Feng, S.F.H. Chen, Effect of Bi2O3 on physical, optical and structural properties of boron silicon bismuthate glasses. Opt. Mater. 32(1), 159–163 (2009). https://doi.org/10.1016/j.optmat.2009.07.005

    Article  CAS  Google Scholar 

  48. M.S. Sadeq, H.Y. Morshidy, Effect of mixed rare-earth ions on the structural and optical properties of some borate glasses. Ceram. Int. 45, 18327–18332 (2019). https://doi.org/10.1016/j.ceramint.2019.06.046

    Article  CAS  Google Scholar 

  49. M.S. Sadeq, M.A. Abdo, Effect of iron oxide on the structural and optical properties of alumino-borate glasses. Ceram. Int. 47, 2043–2049 (2021). https://doi.org/10.1016/j.ceramint.2020.09.036

    Article  CAS  Google Scholar 

  50. A.M. Abdel-Ghany, A.S. Abu-Khadra, M.S. Sadeq, Influence of Fe cations on the structural and optical properties of alkali-alkaline borate glasses. J. Non-cryst. Solids 548, 120320 (2020). https://doi.org/10.1016/j.jnoncrysol.2020.120320

    Article  CAS  Google Scholar 

  51. H.Y. Morshidy, M.S. Sadeq, A. Raouf Mohamed, M.M. EL-Okr, The role of CuCl2 in tuning the physical, structural and optical properties of some Al2O3–B2O3 glasses. J. Non-cryst. Solids 528, 119749 (2020). https://doi.org/10.1016/j.jnoncrysol.2019.119749

    Article  CAS  Google Scholar 

  52. E. Malchukova, B. Boizot, G. Petite, D. Ghaleb, Irradiation effects in oxide glasses doped with transition and rare-earth elements. Eur. Phys. J. 45(1), 10701 (2009). https://doi.org/10.1051/epjap:2008185

    Article  CAS  Google Scholar 

  53. K. Marimuthu, R.T. Karunakaran, S. Surendra Babu, G. Muralidharan, S. Arumugam, C.K. Jayasankar, Structural and spectroscopic investigations on Eu3+-doped alkali fluoroborate glasses. Solid State Sci. 11, 1297–1302 (2009). https://doi.org/10.1016/j.solidstatesciences.2009.04.011

    Article  CAS  Google Scholar 

  54. S.B. Adamu, M.K. Halimah, K.T. Chan, F.D. Muhammad, S.N. Nazrin, E. Scavino, S.A. Kamaruddin, A.H. Az’lina, N.A.M. Ghani, Structural, prediction and simulation of elastic properties for tellurite based glass systems doped with nano and micro Eu2O3 particles via artificial neural network model. J. Mater. Res. Technol. 17, 586–600 (2022). https://doi.org/10.1016/j.jmrt.2022.01.035

    Article  CAS  Google Scholar 

  55. A. Ali, H.M. Ali, A. Shaaban, Abdallah, Spectroscopic studies of ZnO borate–tellurite glass doped with Eu2O3. J. Mater. Res. Technol. 7(3), 240–247 (2018). https://doi.org/10.1016/j.jmrt.2017.06.008

    Article  CAS  Google Scholar 

  56. V. Kamalaker, G. Upender, V. Ch Ramesh, Chandra,  Raman spectroscopy, thermal and optical properties of TeO2–ZnO–Nb2O5–Nd2O3 glasses. Spectrochimica Acta Part A 89, 149–154 (2012). https://doi.org/10.1016/j.saa.2011.12.057

    Article  CAS  Google Scholar 

  57. V. Nazabal, S. Todoroki, A. Nukui, T. Matsumoto, S. Suehara, T. Hondo, T. Araki, S. Inoue, C. Rivero, T. Cardinal, Oxyfluoride tellurite glasses doped by erbium: thermal analysis, structural organization and spectral properties. J. Non-Cryst. Solids 325, 85–102 (2003). https://doi.org/10.1016/S0022-3093(03)00313-2

    Article  CAS  Google Scholar 

  58. Q. Guihua Liao, J. Chen, H. Xing, D. Gebavi, M. Milanese, M. Fokine, Ferraris, Preparation and characterization of new fluorotellurite glasses for photonics application. J. Non-cryst. Solids 355, 447–452 (2009). https://doi.org/10.1016/j.jnoncrysol.2009.01.011

    Article  CAS  Google Scholar 

  59. S.M. Lima, L.H. da Cunha Andrade, J.R. Silva, A.C. Bento, M.L. Baesso, J. Aparecido Sampaio, L.A. de OliveiraNunes, Y. Guyot, G. Boulon, Broad combined orange-red emissions from Eu2+- and Eu3+-doped low-silica calcium aluminosilicate glass. Opt. Express 20, 12658–12665 (2012). https://doi.org/10.1364/OE.20.012658

    Article  CAS  Google Scholar 

  60. D. Sola, D. Conejos, J. Martínez de Mendivil, L. Ortega-San-Martín, G. Lifante, J.I. Peña, Directional solidification, thermo-mechanical and optical properties of (MgxCa1-x)3Al2Si3O12 glasses doped with Nd3+ ions. Opt. Express 23, 26356–26368 (2015). https://doi.org/10.1364/OE.23.026356

    Article  CAS  Google Scholar 

  61. K.A. Naseer, S. Arunkumar, K. Marimuthu, The impact of Er3+ ions on the spectroscopic scrutiny of Bismuth bariumtelluroborate glasses for display devices and 1.53 µm amplification. J. Non-cryst. Solids 520, 119463 (2019). https://doi.org/10.1016/j.jnoncrysol.2019.119463

    Article  CAS  Google Scholar 

  62. S. Bulent Aktas, M. Yalcin, E. Albaskara, G. Aytar, Ceyhan, Zeynep Şilan Turhan, Effect of Er2O3 on structural, mechanical, and optical properties of Al2O3-Na2O-B2O3-SiO2 glass. J. Non-cryst. Solids 584, 121516 (2022). https://doi.org/10.1016/j.jnoncrysol.2022.121516

    Article  CAS  Google Scholar 

  63. P. Evangelin Teresa, K.A. Naseer, K. Tomasz Piotrowski, D.A. Marimuthu, H. Aloraini, Aljawhara, M.I. Almuqrin, Sayyed, Optical properties and radiation shielding studies of europium doped modifier reliant multi former glasses. Optik 247, 168005 (2021). https://doi.org/10.1016/j.ijleo.2021.168005

    Article  CAS  Google Scholar 

  64. R. Divina, P. Suthanthirakumar, K.A. Naseer, K. Marimuthu, Luminescence Studies on Eu3+ ions doped Telluroborate Glasses for Photonic Applications, AIP Conference Proceedings 2115 (2019) 030267, https://doi.org/10.1063/1.5113106

  65. R.J. Rajagukguk, M. Hidayat, Y. Djamal, M. Ruangtaweep, J. Kaewkhao, Structural and optical properties of Nd3+ doped Na2O-PbO-ZnO-Li2O-B2O3 glasses system. Key Eng. Mater. 675–676, 424–429 (2016). https://doi.org/10.4028/www.scientific.net/KEM.675-676.424

    Article  Google Scholar 

  66. M.H.A. Mhareb, S. Hashim, S.K. Ghoshal, Y.S.M. Alajerami, M.A. Saleh, R.S. Dawaud, N.A.B. Razak, S.A.B. Azizan, Impact of Nd3+ ions on physical and optical properties of Lithium Magnesium Borate glass. Opt. Mater. 37, 391–397 (2014). https://doi.org/10.1016/j.optmat.2014.06.033

    Article  CAS  Google Scholar 

  67. R.R. Reddy, Y. Nazeer Ahammed, P. Abdul Azeem, K. Rama Gopal, T.V.R. Rao, S. Buddhudu, N. Sooraj, Hussain, Absorption and emission spectral studies of Sm3+ and Dy3+ doped alkali fluoroborate glasses. J. Quant. Spectrosc. Radiative Transf. 77(2), 149–163 (2003). https://doi.org/10.1016/S0022-4073(02)00084-5

    Article  CAS  Google Scholar 

  68. K. Mariselvam, R. Arun, The emission characteristics of Er3+: BBFB glasses for infra-red laser and gamma ray shielding applications. Optik 226, 165910 (2021)

    Article  CAS  Google Scholar 

  69. A.R. Anirban Chakrabarti, Molla, Synthesis of Eu2O3 doped BaO-TiO2-GeO2 based glass-ceramics: crystallization kinetics, optical and electrical properties. J. Non-cryst. Solids 505, 354–366 (2019). https://doi.org/10.1016/j.jnoncrysol.2018.11.002

    Article  CAS  Google Scholar 

  70. H. Zishan, S.A. Khan, N. Khan, S. Salah, S.M. Habib, A.A. Abdallah El-Hamidy, Al-Ghamdi, Effect of Composition on Electrical and Optical Properties of Thin Films of Amorphous Ga x Se100 – x Nanorods. Nanoscale Res. Lett. 5, 1512–1517 (2010). https://doi.org/10.1007/s11671-010-9671-5

    Article  CAS  Google Scholar 

  71. K.A. Naseer, G. Sathiyapriya, K. Marimuthu, T. Piotrowski, M.S. Alqahtani, E.S. Yousef, Optical, elastic, and neutron shielding studies of Nb2O5 varied Dy3+ doped barium-borate glasses. Optik 251, 168436 (2022). https://doi.org/10.1016/j.ijleo.2021.168436

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors are contributed equally to this study. Material preparation, data collection, and analysis were performed by SCC and GK. The writing of original draft was performed by SCC and GK. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Gokhan Kilic.

Ethics declarations

The authors confirm that the article meets ethical standards.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colak, S.C., Kilic, G. Structural, physical, and optical characterization of (Nd3+/Eu3+)-doped zinc-rich silica–borate glasses. J Mater Sci: Mater Electron 33, 21852–21863 (2022). https://doi.org/10.1007/s10854-022-08972-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08972-6

Navigation