Skip to main content
Log in

SrWO4: Er3+; an efficient green phosphor for LED and optical thermometry applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The present article reports the up- and down-conversion photoluminescence studies of Er3+-activated SrWO4 (SWO) phosphors. The synthesized samples are characterized by different characterization instruments. The phase formation and particle morphology are ensured through X-ray diffractogram, Field emission scanning electron microscopy (FESEM), and Transmission electron microscopy (TEM). Fourier Transform Infrared spectroscopy (FTIR) is used to gather chemical and structural information through the identification of vibrational bands of the sample. The elemental compositions and their oxidation states are determined using X-ray photoelectron spectroscopy (XPS). Diffuse reflectance spectroscopy is used to analyze the reflectance spectra and obtain the optical bandgap of the material. The photoluminescence down-conversion (DC) and up-conversion (UC) emissions are obtained in the green region under near-ultraviolet (UV) excitation of 379 nm and near-infrared excitation of 980 nm, respectively. Bright green LED is fabricated by coating the prepared phosphor on a 365 nm UV LED chip. Temperature-dependent UC is conducted to explore the temperature sensing performance of the material. The material exhibits excellent thermal stability and temperature sensing sensitivity of 7.8 ⋅ 10− 3 K− 1 under UC study. The proposed material can be developed as a near-UV excited green phosphor for white-LED and non-contact optical temperature sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data are represented in the manuscript in the form of graphs. The raw data will be made available on reasonable request.

References

  1. S. Li, W. Wang, X. Wei, L. Li, Q. Zhang, Y. Li, Y. Pan, Luminescent properties of Sr2LaF7: Yb3+/Er3+ nanocrystals embedded in glass ceramics for optical thermometry. Opt. Mater. (Amst) 113, 110840 (2021). https://doi.org/10.1016/j.optmat.2021.110840

    Article  CAS  Google Scholar 

  2. X. Liu, J. Wang, R. Lei, S. Zhao, F. Huang, D. Deng, S. Xu, Comparison study on the different strategies designed for ratiometric luminescence thermometry in Er3+/Yb3+: SrMoO4 phosphor, Sensors Actuators. A Phys. 315, 112287 (2020). https://doi.org/10.1016/j.sna.2020.112287

    Article  CAS  Google Scholar 

  3. K. Saidi, M. Dammak, K. Soler-Carracedo, I.R. Martín, Optical thermometry based on upconversion emissions in Na3Gd (VO4)2: Yb3+-Er3+/Ho3+ micro crystals. J. Alloys Compd. 891, 161993 (2022). https://doi.org/10.1016/j.jallcom.2021.161993

    Article  CAS  Google Scholar 

  4. A. Pandey, V.K. Rai, V. Kumar, V. Kumar, H.C. Swart, Upconversion based temperature sensing ability of Er3+-Yb3+codoped SrWO4: An optical heating phosphor. Sens. Actuators B Chem 209, 352–358 (2015). https://doi.org/10.1016/j.snb.2014.11.126

    Article  CAS  Google Scholar 

  5. D.J. Zhang, J.C. Zhang, J.Y. Zhou, S.S. Cai, Y. Gao, B.Q. Yuan, R.C. Zhang, Synthesis and the temperature-dependent luminescent properties of SrWO4:Eu3+ ultralong nanowire phosphors. Inorg. Chem. Commun. 71, 50–53 (2016). https://doi.org/10.1016/j.inoche.2016.07.004

    Article  CAS  Google Scholar 

  6. P.F.S. Pereira, I.C. Nogueira, E. Longo, E.J. Nassar, I.L.V. Rosa, L.S. Cavalcante, Rietveld refinement and optical properties of SrWO4:Eu3+ powders prepared by the non-hydrolytic sol-gel method. J. Rare Earths 33, 113–128 (2015). https://doi.org/10.1016/S1002-0721(14)60391-4

    Article  CAS  Google Scholar 

  7. D.L. Shruthi, A. Jagannatha Reddy, G.N. Anil Kumar, Structural, Judd-Ofelt, photoluminescence properties of Eu3+activated SrWO4 phosphors: Electronic, vibrational, elastic properties from ab initio study. Opt. Mater. (Amst) 118, 111243 (2021). https://doi.org/10.1016/j.optmat.2021.111243

    Article  CAS  Google Scholar 

  8. H. Feng, Y. Yang, X. Wang, Microwave radiation heating synthesis and luminescence of SrWO4 and SrWO4:xEu3+ powders. Ceram. Int. 40, 10115–10118 (2014). https://doi.org/10.1016/j.ceramint.2014.01.129

    Article  CAS  Google Scholar 

  9. P.F.S. Pereira, A.P. De Moura, I.C. Nogueira, M.V.S. Lima, E. Longo, P.C. De Sousa Filho, O.A. Serra, E.J. Nassar, I.L.V. Rosa, Study of the annealing temperature effect on the structural and luminescent properties of SrWO4:Eu phosphors prepared by a non-hydrolytic sol-gel process. J. Alloys Compd. 526, 11–21 (2012). https://doi.org/10.1016/j.jallcom.2012.02.083

    Article  CAS  Google Scholar 

  10. J. Zhou, N. Sun, Z. Qiu, X. Huang, X. Wang, W. Zhang, Effect of Li+, La3+ co-doping on the photoluminescence enhancement of Sr3AlO4F:Sm3+ orange-red-emitting phosphor for white light-emitting diodes. Mater. Today Commun. 29, 102806 (2021). https://doi.org/10.1016/j.mtcomm.2021.102806

    Article  CAS  Google Scholar 

  11. C. Han, X. Li, Y. Duan, R. Shen, L. Cheng, Z. Guan, S. Xu, J. Sun, H. Yu, B. Chen, Photoluminescence, optical transition properties and temperature-induced shift of charge transfer band and temperature sensing property of GdNbTiO6: Sm3+ phosphors, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 260, 119951 (2021). https://doi.org/10.1016/j.saa.2021.119951

    Article  CAS  Google Scholar 

  12. Z. Sun, Z. Zhu, J. Luo, Z. chao Wu, L. Zhou, X. Zhang, Sr3(Y,Eu)(BO3)3: A thermal-stable red-emitting solid-solution phosphor for NUV LED. Ceram. Int. 45, 22517–22522 (2019). https://doi.org/10.1016/j.ceramint.2019.07.277

    Article  CAS  Google Scholar 

  13. E. Öztürk, E. Karacaoglu, The effect of Eu3+-doping on the photoluminescent properties of REInO3 (RE = Er, Sm) type phosphors. Mater. Today Commun. 25, 7–11 (2020). https://doi.org/10.1016/j.mtcomm.2020.101556

    Article  CAS  Google Scholar 

  14. T. Kang, S. Lim, S. Lee, H. Kang, Y. Yu, J. Kim, Luminescent properties of CaSc2O4:Ce3+ green phosphor for white LED and its optical simulation. Opt. Mater. (Amst) 98, 109501 (2019). https://doi.org/10.1016/j.optmat.2019.109501

    Article  CAS  Google Scholar 

  15. D.A. Hakeem, D.H. Kim, S.W. Kim, K. Park, Crystal structure and photoluminescence properties of novel garnet Y 2–x LaCaGa3ZrO12:xLn3+ (Ln = Eu and Tb) phosphors, Dye. Pigment. 163, 715–724 (2019). https://doi.org/10.1016/j.dyepig.2018.12.045

    Article  CAS  Google Scholar 

  16. Q. Li, C. Chen, Y. Qiao, B. Yu, B. Shen, Y. Zhang, High thermal stability of green-emitting phosphor NaBaB9O15: Tb3+ via energy compensation. J. Alloys Compd. 897, 163131 (2022). https://doi.org/10.1016/j.jallcom.2021.163131

    Article  CAS  Google Scholar 

  17. Y. Zhou, F. Li, X. Wang, Q. Zhu, X. Li, X. Sun, J.G. Li, Facile synthesis of Gd2O2SO4:Tb and Gd2O2S:Tb green phosphor nanopowders of unimodal size distribution and photoluminescence. Adv. Powder Technol. 32, 1911–1919 (2021). https://doi.org/10.1016/j.apt.2021.04.003

    Article  CAS  Google Scholar 

  18. B.C. Jamalaiah, P.S. Khan, N. Madhu, P. Gawas, V. Nutalapati, A.S. Narayana Reddy, G.V.L. Reddy, Green luminescent Sr3Gd(PO4)3: Tb3+ phosphors for lighting applications, Ceram. Int. (2022) 1–8. https://doi.org/10.1016/j.ceramint.2022.04.067

  19. H. Zhou, H. Zhang, X. Ye, X. Tong, J. Han, X. Zhang, Near-UV excited green-emission enhancement by efficient energy transfer in Na1.8Mg0.9Si1.1O4:Ce3+,Tb3+ phosphor for solid-state lighting applications. Opt. Laser Technol. 150, 107950 (2022). https://doi.org/10.1016/j.optlastec.2022.107950

    Article  CAS  Google Scholar 

  20. J. Song, H. Li, Y. Xiang, J. Zhu, Content and temperature quenching of Tb3+-activated Bi3TeBO9 green phosphor excited by NUV/VIS light. J. Solid State Chem. 313, 123317 (2022). https://doi.org/10.1016/j.jssc.2022.123317

    Article  CAS  Google Scholar 

  21. J. Chen, W.N. Zhang, S.F. Cui, X.S. Peng, F.F. Hu, R.F. Wei, H. Guo, D.X. Huang, Up-conversion luminescence properties and temperature sensing performances of Ba5Y8Zn4O21:Yb3+, Er3+ phosphors. J. Alloys Compd. 875, 159922 (2021). https://doi.org/10.1016/j.jallcom.2021.159922

    Article  CAS  Google Scholar 

  22. Y. Zi, Z. Yang, Z. Xu, X. Bai, A. Ullah, I. Khan, A.A. Haider, J. Qiu, Z. Song, Y. Wang, Y. Cun, A novel upconversion luminescence temperature sensing material: Negative thermal expansion Y2Mo3O12:Yb3+, Er3+ and positive thermal expansion Y2Ti2O7:Yb3+, Er3+ mixed phosphor. J. Alloys Compd. 880, 160156 (2021). https://doi.org/10.1016/j.jallcom.2021.160156

    Article  CAS  Google Scholar 

  23. Y. Tong, W.N. Zhang, R.F. Wei, L.P. Chen, H. Guo, Na2YMg2(VO4)3:Er3+,Yb3+ phosphors: Up-conversion and optical thermometry. Ceram. Int. 47, 2600–2606 (2021). https://doi.org/10.1016/j.ceramint.2020.09.106

    Article  CAS  Google Scholar 

  24. J. Wang, R. Lei, S. Zhao, F. Huang, D. Deng, S. Xu, H. Wang, Color tunable Bi3+/Eu3+ co-doped La2ZnTiO6 double perovskite phosphor for dual-mode ratiometric optical thermometry. J. Alloys Compd. 881, 160601 (2021). https://doi.org/10.1016/j.jallcom.2021.160601

    Article  CAS  Google Scholar 

  25. W. Xu, X. Zhu, D. Zhao, L. Zheng, F. Shang, Z. Zhang, Optical thermometry based on near-infrared luminescence from phosphors mixture. J. Rare Earths (2021). https://doi.org/10.1016/j.jre.2020.12.011

    Article  Google Scholar 

  26. Q. Han, H. Hao, J. Yang, Z. Sun, J. Sun, Y. Song, Y. Wang, X. Zhang, Optical temperature sensing based on thermal, non-thermal coupled levels and tunable luminescent emission colors of Er3+/Tm3+/Yb3+ tri-doped Y7O6F9 phosphor. J. Alloys Compd. 786, 770–778 (2019). https://doi.org/10.1016/j.jallcom.2019.02.047

    Article  CAS  Google Scholar 

  27. R. Galvão, L.F. dos Santos, R.R. Gonçalves, L. de S. Menezes, Fluorescence Intensity Ratio-based temperature sensor with single Nd3+:Y2 O3 nanoparticles: Experiment and theoretical modeling. Nano Sel. 2, 346–356 (2021). https://doi.org/10.1002/nano.202000148

    Article  CAS  Google Scholar 

  28. X. Liu, S. Shi, K. Yang, L. Chen, D. Deng, S. Xu, Temperature sensing characteristics of Bi3+/Eu3+ co-activated SrGa2B2O7: Phosphor for dual-mode optical thermometry. J. Alloys Compd. 879, 160247 (2021). https://doi.org/10.1016/j.jallcom.2021.160247

    Article  CAS  Google Scholar 

  29. A. Kumar, D.K. Singh, J. Manam, Structural and optical properties of highly thermally active Gd2 Zr2O7:Dy3+ phosphors for lighting applications. J. Mater. Sci. Mater. Electron. 30, 2360–2372 (2019). https://doi.org/10.1007/s10854-018-0509-8

    Article  CAS  Google Scholar 

  30. H. Gao, C. Yu, Y. Wang, S. Wang, H. Yang, F. Wang, S. Tang, Z. Yi, D. Li, A novel photoluminescence phenomenon in a SrMoO4/SrWO4 micro/nano heterojunction phosphors obtained by the polyacrylamide gel method combined with low temperature calcination technology. J. Lumin. 243, 118660 (2022). https://doi.org/10.1016/j.jlumin.2021.118660

    Article  CAS  Google Scholar 

  31. S. Wang, H. Gao, Y. Wang, G. Sun, X. Zhao, H. Liu, C. Chen, L. Yang, Effect of the Sintering Process on the Structure, Colorimetric, Optical and Photoluminescence Properties of SrWO4 Phosphor Powders. J. Electron. Mater. (2020). https://doi.org/10.1007/s11664-020-07941-1

    Article  Google Scholar 

  32. B.P. Maheshwary, R.A. Singh, Singh, Effect of annealing on the structural, optical and emissive properties of SrWO4:Ln3+ (Dy3+, Eu3+ and Sm3+) nanoparticles, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 152, 199–207 (2016). https://doi.org/10.1016/j.saa.2015.07.074

    Article  CAS  Google Scholar 

  33. M. Muralidharan, V. Anbarasu, A. Elaya Perumal, K. Sivakumar, Studies on multifunctional behaviour of Cr doped SrWO4 Compounds. J. Mater. Sci. Mater. Electron. 26, 6926–6938 (2015). https://doi.org/10.1007/s10854-015-3311-x

    Article  CAS  Google Scholar 

  34. D. Sivaganesh, S. Saravanakumar, V. Sivakumar, S. Sasikumar, J. Nandha Gopal, S. Kalpana, R. Rajajeyaganthan, Sm3+ induced-SrWO4 phosphor: analysis of photoluminescence and photocatalytic properties with electron density distribution studies. J. Mater. Sci. Mater. Electron. 31, 8865–8883 (2020). https://doi.org/10.1007/s10854-020-03421-8

    Article  CAS  Google Scholar 

  35. K.M. Abualnaja, L. Šiller, B.R. Horrocks, Photoluminescence study of erbium-mixed alkylated silicon nanocrystals, 9 (2015) 234–244

  36. H. Gao, S. Wang, Y. Wang, H. Yang, F. Wang, S. Tang, Z. Yi, D. Li, CaMoO4/CaWO4 heterojunction micro/nanocomposites with interface defects for enhanced photocatalytic activity. Colloids Surf. Physicochem Eng Asp 642, 128642 (2022). https://doi.org/10.1016/j.colsurfa.2022.128642

    Article  CAS  Google Scholar 

  37. H. Gao, Y. Wang, S. Wang, H. Yang, Z. Yi, A simple fabrication, microstructure, optical, photoluminescence and supercapacitive performances of MgMoO4/MgWO4 heterojunction micro/nanocomposites. Solid State Sci. 129, 106909 (2022). https://doi.org/10.1016/j.solidstatesciences.2022.106909

    Article  CAS  Google Scholar 

  38. D. Kumar Singh, K. Mondal, J. Manam, Improved photoluminescence, thermal stability and temperature sensing performances of K+ incorporated perovskite BaTiO3:Eu3+ red emitting phosphors. Ceram. Int. 43, 13602–13611 (2017). https://doi.org/10.1016/j.ceramint.2017.07.069

    Article  CAS  Google Scholar 

  39. R. Bairy, J.A.,S.D. Kulkarni, M. M S, V. H, Role of Zn in tuning the band gap, surface morphology, photoluminescence and optical nonlinearities of CdO nanostructures for photonic device applications. Mater. Res. Express (2019). https://doi.org/10.1088/2053-1591/ab3329

    Article  Google Scholar 

  40. J. Chen, J.J. Guo, Y.H. Chen, X.S. Peng, G.A. Ashraf, H. Guo, Up-conversion properties of Ba3Lu2Zn5O11:Yb3+,Er3+ phosphors for optical thermometer based on FIR technique. J. Lumin. 238, 118294 (2021). https://doi.org/10.1016/j.jlumin.2021.118294

    Article  CAS  Google Scholar 

  41. A. Kumar, J. Manam, Optical thermometry using up and down conversion photoluminescence mechanism in Y2Zr2O7: Er3+ phosphors with excellent sensing sensitivity. J. Alloys Compd. 829, 154610 (2020). https://doi.org/10.1016/j.jallcom.2020.154610

    Article  CAS  Google Scholar 

  42. A.K. Ambast, J. Goutam, S. Som, S.K. Sharma, Ca1– x–yDyxKyWO4: A novel near UV converting phosphor for white light emitting diode. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 122, 93–99 (2014). https://doi.org/10.1016/j.saa.2013.11.032

    Article  CAS  Google Scholar 

  43. Y. Ma, R. Liu, X. Geng, X. Hu, W. Chen, B. Deng, R. Yu, H. Geng, Synthesis and spectroscopic analysis of Eu3+-doped tungsten bronze Sr5YTi3Nb7O30 phosphors for w-LED and visualization of latent fingerprint. Ceram. Int. (2021). https://doi.org/10.1016/j.ceramint.2021.10.198

    Article  Google Scholar 

  44. R. Gopal, A. Kumar, J. Manam, Enhanced photoluminescence and abnormal temperature dependent photoluminescence property of SrWO4:Dy3+ phosphor by the incorporation of Li+ ion. Mater. Chem. Phys. 272, 124960 (2021). https://doi.org/10.1016/j.matchemphys.2021.124960

    Article  CAS  Google Scholar 

  45. A. Kumar, J. Manam, Color tunable emission and temperature dependent photoluminescence properties of Eu3+ co-doped Gd2Zr2O7:Dy3+ phosphors. Opt. Mater. (Amst) 96, 109373 (2019). https://doi.org/10.1016/j.optmat.2019.109373

    Article  CAS  Google Scholar 

  46. P.K. Vishwakarma, S.B. Rai, A. Bahadur, Intense red and green emissions from Ho3+/Yb3+ co-doped Sodium Gadolinium Molybdate Nano-phosphor: Effect of calcination temperature and Intrinsic optical bistability. Mater. Res. Bull. 133, 111041 (2021). https://doi.org/10.1016/j.materresbull.2020.111041

    Article  CAS  Google Scholar 

  47. Y.C. Jiang, Y. Tong, S.Y.Z. Chen, W.N. Zhang, F.F. Hu, R.F. Wei, H. Guo, A three-mode self-referenced optical thermometry based on up-conversion luminescence of Ca2MgWO6:Er3+,Yb3+ phosphors. Chem. Eng. J. 413, 127470 (2021). https://doi.org/10.1016/j.cej.2020.127470

    Article  CAS  Google Scholar 

  48. L. Zhang, Q. Meng, W. Sun, S. Lü, Temperature-sensing characteristics of NaGd(MoO4)2: Sm3+, Tb3+ phosphors. Ceram. Int. 47, 670–676 (2021). https://doi.org/10.1016/j.ceramint.2020.08.175

    Article  CAS  Google Scholar 

  49. Y. Hu, F. Zhou, X. Tian, C. Ji, Z. Huang, J. Wen, F. Luo, Z. Chen, X. Liu, Y. Peng, CaSnO3: Pr3+ phosphor for new application in temperature sensing, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 243 (2020). https://doi.org/10.1016/j.saa.2020.118799

  50. W.B. Dai, K. Huang, H. Li, Y.M. Fan, Y. Chen, M. Xu, Study on the structure and optical properties of phosphor for potential application in temperature sensing. J. Lumin. (2020). https://doi.org/10.1016/j.jlumin.2020.117529

    Article  Google Scholar 

  51. J. Zhang, Y. Zhang, X. Li, Z. Zhai, Z. Hua, KBaYSi2O7:Yb3+-Er3+/Ho3+ phosphors: Optical temperature sensing materials of high sensitivity. J. Lumin. 227, 117562 (2020). https://doi.org/10.1016/j.jlumin.2020.117562

    Article  CAS  Google Scholar 

  52. J.K. Cao, F.F. Hu, L.P. Chen, H. Guo, C. Duan, M. Yin, Optical thermometry based on up-conversion luminescence behavior of Er3+-doped KYb2F7nano-crystals in bulk glass ceramics. J. Alloys Compd. 693, 326–331 (2017). https://doi.org/10.1016/j.jallcom.2016.09.163

    Article  CAS  Google Scholar 

  53. Z. Wang, H. Jiao, Z. Fu, Investigating the Luminescence Behaviors and Temperature Sensing Properties of Rare-Earth-Doped Ba2In2O5 Phosphors. Inorg. Chem. 57, 8841–8849 (2018). https://doi.org/10.1021/acs.inorgchem.8b00739

    Article  CAS  Google Scholar 

  54. X. Chai, J. Li, X. Wang, Y. Li, X. Yao, Upconversion luminescence and temperature-sensing properties of Ho3+/Yb3+-codoped ZnWO4 phosphors based on fluorescence intensity ratios. RSC Adv. 7, 40046–40052 (2017). https://doi.org/10.1039/c7ra05846b

    Article  CAS  Google Scholar 

  55. D. Chen, Z. Wan, Y. Zhou, P. Huang, J. Zhong, M. Ding, W. Xiang, X. Liang, Z. Ji, Bulk glass ceramics containing Yb3+/Er3+: β-NaGdF4 nanocrystals: Phase-separation-controlled crystallization, optical spectroscopy and upconverted temperature sensing behavior. J. Alloys Compd. 638, 21–28 (2015). https://doi.org/10.1016/j.jallcom.2015.02.170

    Article  CAS  Google Scholar 

  56. P. Du, L. Luo, J.S. Yu, Low-temperature thermometry based on upconversion emission of Ho/Yb-codoped Ba0.77Ca0.23TiO3 ceramics. J. Alloys Compd. 632, 73–77 (2015). https://doi.org/10.1016/j.jallcom.2015.01.130

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are highly obliged to IIT (ISM) Dhanbad, India for financially and technically encouraging the work. We also appreciate CRF, IIT (ISM) Dhanbad for providing characterization facilities. We are also thankful to Dr. K. Kumar, Department of Physics, IIT (ISM) Dhanbad for providing up-conversion measurement facility.

Funding

The research fellowship and contingency grant to support this work are provided by IIT (ISM) Dhanbad.

Author information

Authors and Affiliations

Authors

Contributions

Sample synthesis, data acquisition, analysis, and manuscript writing were done by Ram Gopal. Final editing and supervision were done by Jairam Manam.

Corresponding author

Correspondence to Jairam Manam.

Ethics declarations

Conflict of interest

The authors ensure that they have no any financial interests or personal relationship that could affect the work.

Ethical approval

The authors confirm that the present work is unpublished and not under consideration for publication elsewhere.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gopal, R., Manam, J. SrWO4: Er3+; an efficient green phosphor for LED and optical thermometry applications. J Mater Sci: Mater Electron 33, 21746–21761 (2022). https://doi.org/10.1007/s10854-022-08964-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08964-6

Navigation