Skip to main content
Log in

Structure and magnetoelectric properties of Gd-doped La0.7Ca0.3MnO3 polycrystalline ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The temperature coefficient of resistance (TCR) and magnetoresistive (MR) properties of materials have a large impact on the performance of devices such as infrared sensors and magnetic storage systems. Herein, to develop materials with high TCR and MR properties that can be used in a more practical way in these devices, a series of La0.7−xGdxCa0.3MnO3 (x = 0, 0.015, 0.03, 0.045, 0.06, 0.09) polycrystalline ceramics were synthesized by the sol–gel method. The results show that the unit cell volume of the samples decreases gradually with the increase of the element doping ratio. A maximum TCR of 44.84%·K−1 (0 T) and an MR of 84.79% (1 T) were achieved at doping levels x = 0.03 and x = 0.045, respectively. Compared with the base sample La0.7Ca0.3MnO3 (LCMO), its TCR and MR have been improved by 10% and 30%, respectively. The analysis shows that for LCMO, the doping of gadolinium decreases the average ionic radius at the A-site, leading to a decrease in the unit cell volume and a decrease in the single-electron energy band width. These changes improve the magnetoelectric transport properties of La0.7Ca0.3MnO3 materials within a certain doping range. This study further enriches the effect of doping on the magnetoelectric transport properties of LCMO material systems and provides an aid for the preparation of LCMO materials with high TCR and high MR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. S. Jin, T.H. Tiefel, M. McCormack, R.A. Fastnacht, R. Ramesh, L.H. Chen, Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films. Science 264, 413–415 (1994)

    Article  CAS  Google Scholar 

  2. M.F. Hundley, M. Hawley, R.H. Heffner, Q.X. Jia, J.J. Neumeier, J. Tesmer, J.D. Thompson, X.D. Wu, Transport-magnetism correlations in the ferromagnetic oxide La0.7Ca0.3MnO3. Appl. Phys. Lett. 67, 860–862 (1995)

    Article  CAS  Google Scholar 

  3. R. Mahesh, R. Mahendiran, A.K. Raychaudhuri, C.N.R. Rao, Effect of particle size on the giant magnetoresistance of La0.7Ca0.3MnO3. Appl. Phys. Lett. 68, 2291–2293 (1996)

    Article  CAS  Google Scholar 

  4. K. Ghosh, S.B. Ogale, R. Ramesh, R.L. Greene, T. Venkatesan, K.M. Gapchup, R. Bathe, S.I. Patil, Transition-element doping effects in La0.7Ca0.3MnO3. Phys. Rev. B 59, 533–537 (1999)

    Article  CAS  Google Scholar 

  5. Y. Zhang, X. Xu, Relative cooling power modeling of lanthanum manganites using Gaussian process regression. RSC Adv. 10(35), 20646–20653 (2020)

    Article  CAS  Google Scholar 

  6. J.B. Goodenough, Theory of the role of covalence in the perovskite-type manganites[La, M(II)]MnO3. Phys. Rev. 100, 564–573 (1955)

    Article  CAS  Google Scholar 

  7. C. Zener, Interaction between thed-shells in the transition metal. II. Ferromagnetic compounds of manganese with perovskite structure. Phys. Rev. 82, 403–405 (1951)

    Article  CAS  Google Scholar 

  8. M. Imada, A. Fujimori, Y. Tokura, Metal-insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998)

    Article  CAS  Google Scholar 

  9. Y. Zhang, X. Xu, Curie temperature modeling of magnetocaloric lanthanum manganites using Gaussian process regression. J. Magn. Magn. Mater. 512(7), 166998 (2020)

    Article  CAS  Google Scholar 

  10. J.S. Gwag, H.I. Kim, J.W. Kim, Magnetoelastic effects of (La1−xGdx)0.7Ca0.3MnO3 (x = 0, 0.05, 0.2, 0.3, and 0.4) compound. J. Appl. Phys. 93, 1142–1145 (2003)

    Article  CAS  Google Scholar 

  11. K. Zhao, K.J. Jin, Y.H. Huang, H.B. Lu, M. He, Z.H. Chen, Y.L. Zhou, G.Z. Yang, Laser-induced ultrafast photovoltaic effect in La0.67Ca0.33MnO3 films at room temperature. Physica B 373, 72–75 (2006)

    Article  CAS  Google Scholar 

  12. Y. Zhang, X. Xu. Machine learning the magnetocaloric effect in manganites from compositions and structural parameters. AIP Adv. 10(3) (2020).

  13. W. Xia, K. Leng, Q. Tang, L. Yang, Y. Xie, Z. Wu, K. Yi, X. Zhu, Structural characterization, magnetic and optical properties of perovskite (La1−xLnx)0.67Ca0.33MnO3 (Ln = Nd and Sm; x = 0.0–0.5) nanoparticles synthesized via the sol-gel process. J. Alloys Compd. 867 (2021).

  14. A. Pal, B.S. Nagaraja, K.J. Rachana, K.V. Supriya, D. Kekuda, A. Rao, C.-R. Li, Y.-K. Kuo, Enhancement of temperature coefficient of resistance (TCR) and magnetoresistance (MR) of La0.67–xRExCa0.33MnO3 (x = 0, 0.1; RE = Gd, Nd, Sm) system via rare-earth substitution. Mater. Res. Express 7 (2020).

  15. H.Y. Hwang, S.W. Cheong, P.G. Radaelli, M. Marezio, B. Batlogg, Lattice effects on the magnetoresistance in doped LaMnO3. Phys. Rev. Lett. 75, 914–917 (1995)

    Article  CAS  Google Scholar 

  16. P. Schiffer, A.P. Ramirez, W. Bao, S.W. Cheong, Low temperature magnetoresistance and the magnetic phase diagram of La1-xCaxMnO3. Phys. Rev. Lett. 75, 3336–3339 (1995)

    Article  CAS  Google Scholar 

  17. Y. Zhang, X. Xu, Machine learning the magnetocaloric effect in manganites from compositions and structural parameters. AIP Adv. 10(3) (2020).

  18. D. Li, Q. Chen, Z. Li et al., Structure, electrical and magnetic properties of La0.67Ca0.33−xKxMnO3 polycrystalline ceramic. J. Mater. Sci. 29(3), 1808–1816 (2018)

    CAS  Google Scholar 

  19. S.P. Altintas, A. Amira, C. Terzioglu, Structural characterization and magneto electrical behavior of Sm doped La0.7Ca0.3MnO3 manganites. J. Supercond. Novel Magn. 26(5), 1461–1465 (2013)

    Article  CAS  Google Scholar 

  20. P.K. Siwach, P. Srivastava, H.K. Singh et al., Effect of multielement doping on low-field magnetotransport in La0.7−xMmxCa0.3MnO3 (0.0 ≤ x ≤ 0.45) manganite. J. Magn. Magn. Mater. 321(12), 1814–1820 (2009)

    Article  CAS  Google Scholar 

  21. L. Wang, M. Al-Mamun, Y.L. Zhong, L. Jiang, P. Liu, Y. Wang, H.G. Yang, H. Zhao, Ca2+ and Ga3+ doped LaMnO3 perovskite as a highly efficient and stable catalyst for two-step thermochemical water splitting. Sustain. Energy Fuels 1, 1013–1017 (2017)

    Article  CAS  Google Scholar 

  22. J. Ma, M. Theingi, Q. Chen, W. Wang, X. Liu, H. Zhang, Influence of synthesis methods and calcination temperature on electrical properties of La1−xCaxMnO3 (x = 0.33 and 0.28) ceramics. Ceram. Int. 39, 7839–7843 (2013)

    Article  CAS  Google Scholar 

  23. B. Kurniawan, S. Winarsih, A. Imaduddin, A. Manaf, Correlation between microstructure and electrical transport properties of La0.7(Ba1-xCax)0.3MnO3(x = 0 and 0.03) synthesized by sol-gel. Physica B 532, 161–165 (2018)

    Article  CAS  Google Scholar 

  24. T.D. Thanh, N.T. Dung, N. Van Dang, L.V. Bau, H.-G. Piao, T.L. Phan, P.D. Huyen Yen, K.X. Hau, D.-H. Kim, S.-C. Yu, Tuning the magnetic phase transition and the magnetocaloric properties of La0.7Ca0.3MnO3 compounds through Sm-doping. AIP Adv. 8 (2018).

  25. X. Liu, Y.Z. Yan, Q.M. Chen, H. Zhang, M.G. Cao, S.C. Zhang, P.X. Zhang, High TCR (temperature coefficient of resistance) La2/3Ca1/3MnO3: Agx polycrystalline composites. Appl. Surf. Sci. 283, 851–855 (2013)

    Article  CAS  Google Scholar 

  26. T. Sun, J. Jiang, Q. Chen, X. Liu, Improvement of room-temperature TCR and MR in polycrystalline La0.67(Ca0.27Sr0.06)MnO3 ceramics by Ag2O doping. Ceram. Int. 44, 9865–9874 (2018)

    Article  CAS  Google Scholar 

  27. L.M. Rodriguez-Martinez, J.P. Attfield, Cation disorder and size effects in magnetoresistive manganese oxide perovskites. Phys. Rev. B 54, R15622–R15625 (1996)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 1156402)

Funding

Funding was provided by National Natural Science Foundation of China (Grant No. 11564021).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by JG, YL and JL. The first draft of the manuscript was written by JG and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hui Zhang.

Ethics declarations

Conflict of interest

No conflict of interest exists in the submission of this manuscript, and manuscript is approved by all authors for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Li, Y., Li, J. et al. Structure and magnetoelectric properties of Gd-doped La0.7Ca0.3MnO3 polycrystalline ceramics. J Mater Sci: Mater Electron 33, 22068–22076 (2022). https://doi.org/10.1007/s10854-022-08962-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08962-8

Navigation