Skip to main content
Log in

NaLaMgWO6 microwave dielectric ceramics and their sub-6 GHz band microstrip patch antenna applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

NaLaMgWO6 microwave dielectric ceramics have been synthesized via the standard solid-state reaction method. The Rietveld refinement of the X-ray diffraction patterns indicates that NaLaMgWO6 crystallizes in a monoclinic crystal structure with a C2/m space group. Raman spectrum of the NaLaMgWO6 ceramic is collected, and the correlations between the Raman active modes and chemical bond vibrations are systematically identified. The optimum microwave dielectric properties are obtained when sintered at 1550 °C, with εr = 17.1, Qf = 26,150 GHz, and τf = − 83.4 ppm/°C. A microstrip patch antenna operating at the sub-6 GHz band is fabricated using the NaLaMgWO6 ceramic as the substrate. The fabricated antenna resonates at 3.82 GHz, which exhibits an excellent S11 value of − 26 dB, a minimum VSWR value of 1.07, and a satisfactory simulated efficiency of 72.2%. The good antenna performance demonstrates the great application potential of NaLaMgWO6 ceramic in the sub-6 GHz band antennas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. M.D. Hill, D.B. Cruickshank, Ceramic materials for 5G wireless communication systems. Am. Ceram. Soc. Bull. 98, 20–25 (2019)

    CAS  Google Scholar 

  2. M. Anab, M.I. Khattak, S.M. Owais, A.A. Khattak, A. Sultan, Design and analysis of millimeter wave dielectric resonator antenna for 5G wireless communication systems. Prog. Electromagn. Res. 98, 239–255 (2020)

    Article  CAS  Google Scholar 

  3. B. Liu, K. Sha, M.F. Zhou, K.X. Song, Y.H. Huang, C.C. Hu, Novel low-εr MGa2O4 (M= Ca, Sr) microwave dielectric ceramics for 5 G antenna applications at the Sub-6 GHz band. J. Eur. Ceram. Soc. 41(10), 5170–5175 (2021)

    Article  CAS  Google Scholar 

  4. F.F. Wu, D. Zhou, C. Du, B.B. Jin, C. Li, Z.M. Qi, S. Sun, T. Zhou, Q. Li, X.Q. Zhang, Design of a Sub-6 GHz dielectric resonator antenna with novel temperature-stabilized (Sm1–xBix)NbO4 (x=0-0.15) microwave dielectric ceramics. ACS Appl. Mater. Interfaces 14(5), 7030–7038 (2022)

    Article  CAS  Google Scholar 

  5. W. Lou, M. Mao, K. Song, K. Xu, B. Liu, W. Li, B. Yang, Z. Qi, J. Zhao, S. Sun, H. Lin, Y. Hu, D. Zhou, D. Wang, I.M. Reaney, Low permittivity cordierite-based microwave dielectric ceramics for 5G/6G telecommunications. J. Eur. Ceram. Soc. 42, 2820–2826 (2022)

    Article  CAS  Google Scholar 

  6. W. Lou, K. Song, F. Hussain, A. Khesro, J. Zhao, H.B. Bafrooei, T. Zhou, B. Liu, M. Mao, K. Xu, E. Taheri-nassaj, D. Zhou, S. Luo, S. Sun, H. Lin, D. Wang, Microwave dielectric properties of Mg1.8R0.2Al4Si5O18 (R = Mg, Ca, Sr, Ba, Mn, Co, Ni, Cu, Zn) cordierite ceramics and their application for 5G microstrip patch antenna. J. Eur. Ceram. Soc. 42, 2254–2260 (2022)

    Article  CAS  Google Scholar 

  7. T. Yan, Y. Wang, J. Jia, D. Wang, The origin of interfacial delamination in Au/ceramic cofired LTCC structure. Ceram. Int. 47, 34845–34850 (2021)

    Article  CAS  Google Scholar 

  8. S.H. Yoon, D.W. Kim, S.Y. Cho, K.S. Hong, Investigation of the relations between structure and microwave dielectric properties of divalent metal tungstate compounds. J. Eur. Ceram. Soc. 26, 2051–2054 (2006)

    Article  CAS  Google Scholar 

  9. L. Cheng, P. Liu, S.X. Qu, H.W. Zhang, Microwave dielectric properties of AWO4 (A= Ca, Ba, Sr) ceramics synthesized via high energy ball milling method. J. Alloys Compd. 581, 553–557 (2013)

    Article  CAS  Google Scholar 

  10. D. Zhou, C.A. Randall, L.X. Pang, H. Wang, J. Guo, G.Q. Zhang, X.G. Wu, L. Shui, X. Yao, Microwave dielectric properties of Li2WO4 ceramic with ultra-low sintering temperature. J. Am. Chem. Soc. 94, 348–350 (2011)

    CAS  Google Scholar 

  11. X. Zhang, Z.X. Fang, Y.H. Jiang, M.X. Wang, S. Gee, L. Zhou, H.Y. Yang et al., Microwave dielectric properties of a low firing and temperature stable lithium magnesium tungstate (Li4MgWO6) ceramic with a rock-salt variant structure. J. Eur. Ceram. Soc. 41, 171–178 (2021)

    Article  Google Scholar 

  12. J. Li, L. Fang, H. Luo, J. Khaliq, Y. Tang, C.C. Li, Li4WO5: a temperature stable low-firing microwave dielectric ceramic with rock salt structure. J. Eur. Ceram. Soc. 36, 243–246 (2016)

    Article  CAS  Google Scholar 

  13. P.P. Ma, L. Yi, X.Q. Liu, L. Li, X.M. Chen, Effects of Mg substitution on order/disorder transition, microstructure, and microwave dielectric characteristics of Ba((Co0.6Zn0.4)1/3Nb2/3)O3 complex perovskite ceramics. J. Am. Ceram. Soc. 96, 1795–1800 (2013)

    Article  CAS  Google Scholar 

  14. J. Jiang, D.H. Fang, C. Lu, Z.M. Dou, G. Wang, F. Zhang, T.J. Zhang, Solid-state reaction mechanism and microwave dielectric properties of CaTiO3–LaAlO3 ceramics. J. Alloys Compd. 638, 443–447 (2015)

    Article  CAS  Google Scholar 

  15. Q. Liu, J. Guo, M.H. Fan, Q. Zhang, S. Liu, K.L. Wong, Z.Y. Liu, B. Wei, Fast synthesis of Dy3+ and Tm3+ co-doped double perovskite NaLaMgWO6: a thermally stable single-phase white-emitting phosphor for WLEDs. J. Mater. Chem. C 8, 2117–2122 (2020)

    Article  CAS  Google Scholar 

  16. Q. Liu, X.B. Li, B. Zhang, L.X. Wang, Q.T. Zhang, L. Zhang, Structure evolution and delayed quenching of the double perovskite NaLaMgWO6: Eu3+ phosphor for white LEDs. Ceram. Int. 42, 15294–15300 (2016)

    Article  CAS  Google Scholar 

  17. W.G. Ran, H.M. Noh, S.H. Park, B.R. Lee, J.H. Kim, J.H. Jeong, J.S. Shi, Er3+-activated NaLaMgWO6 double perovskite phosphors and their bifunctional application in solid-state lighting and non-contact optical thermometry. Dalton Trans. 48, 4405–4412 (2019)

    Article  CAS  Google Scholar 

  18. B.W. Hakki, P.D. Coleman, A dielectric resonant method of measuring inductive capacitance in the millimeter range. IRE Trans. Microw. Theory Tech. 8, 402–410 (1960)

    Article  Google Scholar 

  19. S. Gražulis, D. Chateigner, R.T. Downs, A.F.T. Yokochi, M. Quirós, L. Lutterotti, E. Manakova, J. Butkus, P. Moeck, A. Le Bail, Crystallography open database—an open-access collection of crystal structures. J. Appl. Cryst. 42, 726–729 (2009)

    Article  Google Scholar 

  20. L. Zhang, Q. Liu, N. Ding, H. Yang, L.X. Wang, Q.T. Zhang, Dual-channel enhanced luminescence of double perovskite NaGdMgWO6: Eu3+ phosphor based on alternative excitation and delayed quenching. J. Alloys Compd. 642, 45–52 (2015)

    Article  Google Scholar 

  21. L.L. Wang, H.M. Noh, B.K. Moon, S.H. Park, K.H. Kim, J.S. Shi, J.H. Jeong, Dual-mode luminescence with broad near UV and blue excitation band from Sr2CaMoO6: Sm3+ phosphor for white LEDs. J. Phys. Chem. C 119, 15517–15525 (2015)

    Article  CAS  Google Scholar 

  22. K.N. Kumar, L. Vijayalakshmi, J. Choi, Investigation of upconversion photoluminescence of Yb3+/Er3+: NaLaMgWO6 noncytotoxic double-perovskite nanophosphors. Inorg. Chem. 58, 2001–2011 (2019)

    Article  CAS  Google Scholar 

  23. S.J. Penn, N.M. Alford, A. Templeton, X.R. Wang, M.S. Xu, M. Reece, K. Schrapel, Effects of porosity and grain size on the microwave dielectric properties of sintered alumina. J. Am. Ceram. Soc. 80, 1885–1888 (1997)

    Article  CAS  Google Scholar 

  24. X. Song, K. Du, J. Li, X. Lan, W. Lu, X. Wang, W. Lei, Low-fired fluoride microwave dielectric ceramics with low dielectric loss. Ceram. Int. 45, 279–286 (2019)

    Article  CAS  Google Scholar 

  25. Y.P. Ji, K.X. Song, S.Y. Zhang, Z.L. Lu, G. Wang, L.H. Li, D. Zhou, D.W. Wang, I.M. Reaney, Cold sintered, temperature-stable CaSnSiO5-K2MoO4 composite microwave ceramics and its prototype microstrip patch antenna. J. Eur. Ceram. Soc. 41, 424–429 (2021)

    Article  Google Scholar 

  26. D.H. Jin, B. Liu, K.X. Song, K.W. Xu, Y.H. Huang, C.C. Hu, Y.Y. Hu, Boosting densification and microwave dielectric properties in cold sintered BaF2 ceramics for 5.8 GHz WLAN applications. J. Alloys Compd. 886, 161141 (2021)

    Article  CAS  Google Scholar 

  27. Y.H. Huang, B. Liu, K.X. Song, Microwave dielectric properties of temperature stable (1–x)SrLaAlO4-xTiO2 composite ceramics. Ceram. Int. 44, S125–S128 (2018)

    Article  CAS  Google Scholar 

  28. C.L. Huang, M.H. Weng, Improved high Q value of MgTiO3-CaTiO3 microwave dielectric ceramics at low sintering temperature. Mater. Res. Bull. 36, 2741–2750 (2001)

    Article  CAS  Google Scholar 

  29. B. Liu, K. Sha, Y.Q. Jia, Y.H. Huang, C.C. Hu, L. Li, D. Zhou, K.X. Song, High quality factor cold sintered LiF ceramics for microstrip patch antenna applications. J. Eur. Ceram. Soc. 41, 4835–4840 (2021)

    Article  CAS  Google Scholar 

  30. C. Du, M.S. Fu, D. Zhou, H.H. Guo, H.T. Chen, J. Zhang, J.P. Wang, S.F. Wang, H.W. Liu, W.F. Liu, L. Li, Z. Xu, Dielectric resonator antenna with Y3Al5O12 transparent dielectric ceramics for 5G millimeter-wave applications. J. Am. Ceram. Soc. 104, 1–10 (2006)

    Google Scholar 

  31. H.H. Guo, D. Zhou, C. Du, P.J. Wang, W.F. Liu, L.X. Pang, Q.P. Wang, J.Z. Su, C. Singh, S. Trukhanov, Temperature stable Li2Ti0.75(Mg1/3Nb2/3)0.25O3-based microwave dielectric ceramics with low sintering temperature and ultra-low dielectric loss for dielectric resonator antenna applications. J. Mater. Chem. C 8, 4690–4700 (2020)

    Article  CAS  Google Scholar 

  32. D.E. Bockelman, W.R. Eisenstadt, Combined differential and common-mode scattering parameters: theory and simulation. IEEE Trans. Microw. Theory Tech. 43, 1530–1539 (1995)

    Article  Google Scholar 

  33. D.C. Thompson, O. Tantot, H. Jallageas, G.E. Ponchak, M.M. Tentzeris, J. Papa-polymerou, Characterization of liquid crystal polymer (LCP) material and trans-mission lines on LCP substrates from 30 to 110 GHz. IEEE Trans. Microw. Theory Tech. 52, 1343–1352 (2004)

    Article  CAS  Google Scholar 

Download references

Funding

The financial supports from the Fundamental Research Funds for the Provincial Universities of Zhejiang (GK219909299001-408) are greatly appreciated.

Author information

Authors and Affiliations

Authors

Contributions

FLL: sample preparation, investigation, writing the original draft, BL: supervision, review and editing, funding acquisition, KXS: interpretation, resources.

Corresponding authors

Correspondence to Bing Liu or Kai Xin Song.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, F.L., Liu, B. & Song, K.X. NaLaMgWO6 microwave dielectric ceramics and their sub-6 GHz band microstrip patch antenna applications. J Mater Sci: Mater Electron 33, 21737–21745 (2022). https://doi.org/10.1007/s10854-022-08961-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08961-9

Navigation