Skip to main content

Advertisement

Log in

Effect of solution pH on structure and electrochemical performance of MoS2

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

As energy demand continues to increase, the development of energy storage devices is imminent. Due to its unique structure, molybdenum disulfide (MoS2) is beginning to attract much attention in the energy storage field. However, it is rarely reported that it shows the relationship between the acidic environment and the properties of the MoS2. This study shows that an increase in solution pH decreases the size of the prepared MoS2 particles and increases the particle gap. When solution pH is 3, the prepared MoS2 has the maximum diffusion coefficient, the highest specific capacitance (177.7 F/g at 1 A/g), and good capacity retention (98.15%, 1000 cycles).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. F. Li, Y. Gao, Z. Zhang et al., Hydrothermalsynthesis of flower-like MoS2 microspheres for supercapacitors. Gongneng Cailiao/J. Funct. Mater. 48(3), 03145–03148 (2017)

    CAS  Google Scholar 

  2. Y. Xu, C. Wang, P. Niu et al., Tuning the nitrogen-doping configuration in carbon materials via sulfur doping for ultrastable potassium ion storage. J. Mater. Chem. A 9(29), 16150–16159 (2021)

    Article  CAS  Google Scholar 

  3. S. Wang, D. Xiong, C. Chen et al., The controlled fabrication of hierarchical CoS2@NiS2 core-shell nanocubes by utilizing prussian blue analogue for enhanced capacitive energy storage performance. J. Power Sour. 450, 227712–227723 (2020)

    Article  CAS  Google Scholar 

  4. S. Xu, L. Cai, P. Niu et al., The creation of extra storage capacity in nitrogen-doped porous carbon as high-stable potassium-ion battery anodes. Carbon 178, 256–264 (2021)

    Article  CAS  Google Scholar 

  5. S. Kwon, E. Lee, B. Kim et al., Activated carbon aerogel as electrode material for coin-type EDLC cell in organic electrolyte. Curr. Appl. Phys. 14(4), 603–607 (2014)

    Article  Google Scholar 

  6. W. Zuo, R. Li, C. Zhou et al., Battery-supercapacitor hybrid devices: recent progress and future prospects. Adv. Sci. 4(7), 1600539–1600559 (2017)

    Article  CAS  Google Scholar 

  7. Y. Jiang, J. Liu, Definitions of pseudocapacitive materials: a brief review. Energy Environ. Mater. 2(1), 30–37 (2019)

    Article  Google Scholar 

  8. X. Han, Y. Zhang, J. Wan et al., An activated carbon cloth anode obtained with a fast molten salt method for high-performance supercapacitors. J. Alloys Compds. 838, 155695–155703 (2020)

    Article  CAS  Google Scholar 

  9. Y. Zheng, Y. Tian, S. Sarwar et al., Carbon nanotubes decorated NiSe2 nanosheets for high-performance supercapacitors. J. Power Sour. 452, 227793–227800 (2020)

    Article  CAS  Google Scholar 

  10. K. Chu, Z. Li, S. Xu et al., NiO nanocrystals encapsulated into a nitrogen-doped porous carbon matrix as highly stable Li-ion battery anodes. J. Alloys Compds. 854, 157264–157272 (2021)

    Article  CAS  Google Scholar 

  11. S. Korkmaz, İA. Kariper, Graphene and graphene oxide based aerogels: synthesis, characteristics and supercapacitor applications. J. Energy Storage 27, 101038–101049 (2020)

    Article  Google Scholar 

  12. J. Xie, P. Yang, Y. Wang et al., Puzzles and confusions in supercapacitor and battery: theory and solutions. J. Power Sour. 401, 213–223 (2018)

    Article  CAS  Google Scholar 

  13. S. Hou, Y. Lian, Y. Bai et al., Hollow dodecahedral Co3S4@NiO derived from ZIF-67 for supercapacitor. Electrochim. Acta 341, 136053–136088 (2020)

    Article  CAS  Google Scholar 

  14. J. Li, H. Hao, J. Wang et al., Hydrogels that couple nitrogen-enriched graphene with Ni(OH)2 nanosheets for high-performance asymmetric supercapacitors. J. Alloys Compds. 782, 516–524 (2019)

    Article  CAS  Google Scholar 

  15. X. Li, R. Miao, B. Tao et al., Co3O4/MnO2/Co(OH)2 on nickel foam composites electrode with excellent electrochemical performance for supercapacitor. Solid State Sci. 95, 105941–105947 (2019)

    Article  CAS  Google Scholar 

  16. F. Liu, X. Chu, H. Zhang et al., Synthesis of self-assembly 3D porous Ni(OH)2 with high capacitance for hybrid supercapacitors. Electrochim. Acta 269, 102–110 (2018)

    Article  CAS  Google Scholar 

  17. Y. Cao, X. Qian, W. Zhang et al., Self-formed porous Ni(OH)2 on Ni3S2/Ni foam during electrochemical cycling for high performance supercapacitor with ultrahigh areal capacitance. Electrochim. Acta 303, 148–156 (2019)

    Article  CAS  Google Scholar 

  18. L. Tian, K. Xia, S. Wu et al., Rationally design of 2D branched Ni(OH)2/MnO2 hybrid hierarchical architecture on Ni foam for high performance supercapacitors. Electrochim. Acta 307, 310–317 (2019)

    Article  CAS  Google Scholar 

  19. B. Li, R. Xing, S.V. Mohite et al., CoS2 nanodots anchored into heteroatom-doped carbon layer via a biomimetic strategy: boosting the oxygen evolution and supercapacitor performance. J. Power Sour. 436, 226862–226869 (2019)

    Article  CAS  Google Scholar 

  20. H. Jia, Z. Wang, X. Zheng et al., Controlled synthesis of MOF-derived quadruple-shelled CoS2 hollow dodecahedrons as enhanced electrodes for supercapacitors. Electrochim. Acta 312, 54–61 (2019)

    Article  CAS  Google Scholar 

  21. J.L. Lv, T.X. Liang, M. Yang et al., Comparing different microstructures of CoS formed on bare Ni foam and Ni foam coated graphene and their supercapacitors performance. Colloids Surf. A 529, 57–63 (2017)

    Article  CAS  Google Scholar 

  22. C. Xu, L. Jiang, X. Li et al., Miniaturized high-performance metallic 1T-Phase MoS2 micro-supercapacitors fabricated by temporally shaped femtosecond pulses. Nano Energy 67, 104260–104285 (2020)

    Article  CAS  Google Scholar 

  23. Q. Meng, K. Cai, Y. Chen et al., Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 36, 268–285 (2017)

    Article  CAS  Google Scholar 

  24. C. Wang, X. Wu, Y. Ma et al., Metallic few-layered VSe2 nanosheets: high two-dimensional conductivity for flexible in-plane solid-state supercapacitors. J. Mater. Chem. A 6(18), 8299–8306 (2018)

    Article  CAS  Google Scholar 

  25. S. Xu, Z. Li, K. Chu et al., Construction of NiS nanosheets anchored on the inner surface of nitrogen-doped hollow carbon matrixes with enhanced sodium and potassium storage performances. ACS Appl. Energy Mater. 4(1), 662–670 (2021)

    Article  CAS  Google Scholar 

  26. H. Gupta, S. Chakrabarti, S. Mothkuri et al., High performance supercapacitor based on 2D-MoS2 nanostructures. Mater. Today Proc. 26, 20–24 (2020)

    Article  CAS  Google Scholar 

  27. Z. Wu, H. Lan, Preparation of molybdenum disulfide with various morphologies by using hydrothemethod and their electrochemical capacitance performance. J. Lanzhou Univ. Technol. 42(05), 18–22 (2016)

    Google Scholar 

  28. L. Bia, F. Li, Y. Wang et al., Synthesis and electrochemical performance of MoS2/graphene composite. J. Funct. Mater. 49(09), 9207–9211 (2018)

    Google Scholar 

  29. Y. Tian, Y. He, J. Shang et al., Hydrothermal synthesis and characterization of laminar MoS2. Acta Chim. Sin. 62(18), 1807–1810 (2004)

    CAS  Google Scholar 

  30. Y. Chen, Y. Zheng, X. Zhang et al., Effect of pH value on FeS2 powder synthesized by solvothermal process. Acta Phys. Chim. Sin. 21(04), 419–424 (2005)

    Article  CAS  Google Scholar 

  31. L. Zhao, Study on the stablility of thiourea. J. Henan Norm. Univ. 20(1), 98–102 (1992)

    Google Scholar 

  32. N. Chakrabarty, A.K. Chakraborty, Controlling the electrochemical performance of β-Ni(OH)2/carbon nanotube hybrid electrodes for supercapacitor applications by La doping: a systematic investigation. Electrochim. Acta 297, 173–187 (2019)

    Article  CAS  Google Scholar 

  33. J. Soon, K. Loh, Electrochemical double-layer capacitance of MoS2 nanowall films. Electrochem. Solid-State Lett. 10(11), A250–A254 (2007)

    Article  CAS  Google Scholar 

  34. D. Kesavan, V.K. Mariappan, P. Pazhamalai et al., Topochemically synthesized MoS2 nanosheets: a high performance electrode for wide-temperature tolerant aqueous supercapacitors. J. Colloid Interface Sci. 584, 714–722 (2021)

    Article  CAS  Google Scholar 

  35. J. Liu, Y. Wang, R. Hu et al., High-performance supercapacitor electrode based on 3D rose-like β-Ni(OH)2/rGO nanohybrid. J. Phys. Chem. Solids 138, 109297–109303 (2020)

    Article  CAS  Google Scholar 

  36. J. Zhao, B. Guan, B. Hu et al., Vulcanizing time controlled synthesis of NiS microflowers and its application in asymmetric supercapacitors. Electrochim. Acta 230, 428–437 (2017)

    Article  CAS  Google Scholar 

  37. D.K. Nandi, S. Sahoo, S. Sinha et al., Highly uniform atomic layer-deposited MoS2@3D-Ni-foam: a novel approach to prepare an electrode for supercapacitors. ACS Appl. Mater. Interfaces 9(46), 40252–40264 (2017)

    Article  CAS  Google Scholar 

  38. Q. Zong, H. Yang, Q. Wang et al., Three-dimensional coral-like NiCoP@C@Ni(OH)2 core-shell nanoarrays as battery-type electrodes to enhance cycle stability and energy density for hybrid supercapacitors. Chem. Eng. J. 361, 1–11 (2019)

    Article  CAS  Google Scholar 

  39. M. Iqbal, S. Zakar, S. Haider et al., Electrodeposited CuMnS and CoMnS electrodes for high-performance asymmetric supercapacitor devices. Ceram. Int. 46(13), 21343–21350 (2020)

    Article  CAS  Google Scholar 

  40. V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7(5), 1597–1614 (2014)

    Article  CAS  Google Scholar 

  41. M.M. Baig, I.H. Gul, M.Z. Khan et al., Binder-free heterostructured MWCNTs/Al2S3 decorated on NiCo foam as highly reversible cathode material for high-performance supercapacitors. Electrochim. Acta 340, 135955–135992 (2020)

    Article  CAS  Google Scholar 

  42. V. Boychuk, V. Kotsyubynsky, B. Rachiy et al., β-Ni(OH)2/ reduced graphene oxide composite as electrode for supercapacitors. Mater. Today: Proc. 6, 106–115 (2019)

    CAS  Google Scholar 

  43. H. Zhang, L. Wu, L. Li et al., Integration of MnO2 and ZIF-derived nanoporous carbon on nickel foam as an electrode for high-performance supercapacitors. Ceram. Int. 46(13), 21033–21038 (2020)

    Article  CAS  Google Scholar 

  44. A. Ponrouch, P.L. Taberna, P. Simon et al., On the origin of the extra capacity at low potential in materials for Li batteries reacting through conversion reaction. Electrochim. Acta 61, 13–18 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 51774175), Project supported by discipline innovation team of Liaoning Technical University (No. LNTU20TD-16) and the Project supported by discipline innovation team of Liaoning Technical University (NO. LNTU20TD-09).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization were carried out by FY. Experimental studies were carried out by HH and JZ. Software support and data interpretation were done by QW and HL. The manuscript was prepared by WD.

Corresponding author

Correspondence to Fang Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Huang, H., Zhu, J. et al. Effect of solution pH on structure and electrochemical performance of MoS2. J Mater Sci: Mater Electron 33, 21677–21687 (2022). https://doi.org/10.1007/s10854-022-08956-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08956-6

Navigation