Skip to main content
Log in

Low-frequency noise and impedance spectroscopy of device structures based on perovskite-graphene oxide composite films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We present the results of studies of low-frequency noise and impedance spectroscopy (IS) in operating planar structures based on films of organic-inorganic halide perovskite CH3NH3PbBr3 with and without embedded graphene oxide (GO) flakes as active layers of field-effect transistors and memory chips. It is shown that 1/f flicker noise dominates at low frequencies, while white shot-noise resulting from dark current fluctuations is the limiting noise at high frequencies. It is demonstrated that at similar currents the current noise power spectral density, SI, values are lower by factor ~ 4 for the film CH3NH3PbBr3:GO with respect to that for the film CH3NH3PbBr3 without GO flakes, thus it is concluded that GO flakes act as a trap passivation. The IS results show that under identical conditions the Cole-Cole plots for both films are in good agreement with the equivalent circuit model and represents series resistance, recombination resistance and geometric capacitance, respectively, which arise due to charge accumulation, charge transfer resistance and/or additional interfacial electronic states. The decrease in the noise density by factor 4 in the perovskite films with GO flakes is attributed to the higher conductivity of these films as well as to more uniform distribution of carriers over the sample cross section. The obtained results provide the way to improve the performance of next generation of organic-inorganic perovskite optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. L. Schmidt-Mende, V. Dyakonov,S. Olthof, F. Ünlü, K. Moritz Trong Lê, S. Mathur, A. D. Karabanov, D.C. Lupascu, L. M. Herz, A. Hinderhofer, F. Schreiber, A. Chernikov, D.A. Egger, O. Shargaieva, C. Cocchi, E. Unger, M. Saliba, M. M. Byranvand, M. Kroll, F. Nehm, K. Leo, A. Redinger, J. Höcker, T. Kirchartz, J. Warby, E. Gutierrez-Partida, D. Neher, M. Stolterfoht, U. Würfel, M. Unmüssig, J. Herterich, C. Baretzky, J. Mohanraj, M. Thelakkat, C. Maheu, W. Jaegermann, T. Mayer, J. Rieger, T. Fauster, D. Niesner, F. Yang, S. Albrecht, T. Riedl, A. Fakharuddin, M. Vasilopoulou, Y. Vaynzof, D. Moia, J. Maier, M. Franckevicius , V. Gulbinas, R. A. Kerner, L. Zhao, B. P. Rand, N. Glück, T. Bein, F. Matteocci, L.A. Castriotta, A. Di Carlo, M. Scheffler, C. Draxl. APL Mater. 9, 109202 (2021)

    Article  CAS  Google Scholar 

  2. National Renewable Energy Laboratory, Best Research Cell Efficiencies, www.nrel.gov/ncpv/images/efficiency_chart.jpg; accessed: April 2022

  3. M.I. Asghar, J. Zhang, H. Wang, P.D. Lund, Renew. Sustainable Energy Reviews 77, 131–146 (2017)

    Article  CAS  Google Scholar 

  4. S. Kogan, Electronic Noise and Fluctuations in Solids (Cambridge University Press, New York, 2008)

    Google Scholar 

  5. A. Singh, P.K. Nayak, S. Banerjee, Z. Wang, J.T.-W. Wang, H.J. Snaith, K.S. Narayan, Solar RRL 2, 1700173 (2018)

    Article  Google Scholar 

  6. V.K. Sangwan, M. Zhu, S. Clark, K.A. Luck, T.J. Marks, M.G. Kanatzidis, M.C. Hersam, ACS Appl. Mater. Interfaces 11, 14166–14174 (2019)

    Article  CAS  Google Scholar 

  7. G.V. Nenashev, A.N. Aleshin, I.P. Shcherbakov, V.N. Petrov, Solid State Commun. 348–349(6), 114768 (2022) pp)

    Article  Google Scholar 

  8. H. He, J. Klinowski, M. Forster, A. Lerf, Chem. Phys. Lett. 287, 53–56 (1998)

    Article  CAS  Google Scholar 

  9. A.M. Ivanov, A.V. Klochkov, J. Phys. : Conf. Ser. 2103, 012189 (2021)

    Google Scholar 

  10. F.N. Hooge, T.G.M. Kleinpenning, L.K.J. Vandamme. Rep. Progr. Phys. 44, 479 (1981)

    Article  Google Scholar 

  11. H. Xue, Y. Shao, J. Yoon, T. Lee, W. Lu, IEEE Trans. Electron. Devices 68, 7, 3532–3536 (2021)

    Article  CAS  Google Scholar 

  12. N.M. Shmidt, M.E. Levinshtein, W.V. Lundin, A.I. Besyulkin, P.S. Kopiev, S.L. Rumyantsev, N. Pala, M.S. Shur, Semicond. 38, 998 (2004)

    Article  CAS  Google Scholar 

  13. V. Venugopalan, R. Sorrentino, P. Topolovsek, D. Nava, S. Neutzner, G. Ferrari, A. Petrozza, M. Caironi, Chem 5, 868–880 (2019)

    Article  CAS  Google Scholar 

  14. A.N. Aleshin, I.P. Scherbakov, I.N. Trapeznikova, V.N. Petrov, Phys. Solid State 59, 2486–2490 (2017)

    Article  CAS  Google Scholar 

  15. S. Sawyer, S.L. Rumyantsev, M.S. Shur, N. Pala, Yu Bilenko, J.P. Zhang, X. Hu, A. Lunev, J. Deng, R. Gaska. J. Appl. Phys. 100, 034504 (2006)

    Article  Google Scholar 

  16. G.P. Zhigal’skii, PHYS-USP 46, 449 (2003)

    Article  Google Scholar 

  17. M.I. Saidaminov, V. Adinolfi, R. Comin, A.L. Abdelhady, W. Peng, I. Dursun, M. Yuan, S. Hoogland, E.H. Sargent, O.M. Bakr, Nat. Commun. 6, 8724 (2015)

    Article  CAS  Google Scholar 

  18. Y. Yuan, J. Huang, Acc. Chem. Res. 49, 286–293 (2016)

    Article  CAS  Google Scholar 

  19. V.K. Sangwan, H.N. Arnold, D. Jariwala, T.J. Marks, L.J. Lauhon, M.C. Hersam, Nano Lett. 13, 4351–4355 (2013)

    Article  CAS  Google Scholar 

  20. W. Shin, G. Jung, S. Hong, Y. Jeong, J. Park, D. Jang, B. Park, J. Lee, Sens. Actuators B 318, 128087 (2020)

    Article  CAS  Google Scholar 

  21. H. Zhang, X. Qiao, Y. Shen, T. Moehl, S.M. Zakeeruddin, M. Grätzel, M. Wang, J. Mater. Chem. A 3, 11762 (2015)

    Article  CAS  Google Scholar 

  22. M.T. Khan, M. Salado, A. Almohammedi, S. Kazim, S. Ahmad, Adv. Mater. Interfaces 6, 1901193 (2019)

    Article  CAS  Google Scholar 

  23. A.F. Sosa Gallardo, J.L. Provis, J. Mater. Sci. 56, 1203–1220 (2021)

    Article  CAS  Google Scholar 

  24. D. Kim, E. Muckley, N. Creange, T. Wan, M. Ann, E. Quattrocchi, R. Vasudevan, J. Kim, F. Ciucci, I. Ivanov, S. Kalinin, M. Ahmadi, Adv Sci. 8, 2002510 (2021)

    Article  CAS  Google Scholar 

  25. P. Liu, Z. Liu, C. Qin, T. He, B. Li, L. Ma, K. Shaheen, J. Yang, H. Yang, H. Liu, K. Liu, M. Yuan, Sol. Energy Mater. Sol. Cells 212, 110555 (2020)

    Article  CAS  Google Scholar 

  26. A. Straub, R. Gebs, H. Habenicht, S. Trunk, R.A. Bardos, A.B. Sproul, A.G. Aberle, J. Appl. Phys. 97, 83703 (2005)

    Article  Google Scholar 

  27. J. Song, P. Tyagi, K. An, M. Park, H. Jung, N. Ahn, M. Choi, D. Lee, C. Lee, Org. Electron. 81, 105686 (2020)

    Article  CAS  Google Scholar 

  28. K.A. Luck, V.K. Sangwan, P.E. Hartnett, H.N. Arnold, M.R. Wasielewski, T.J. Marks, M.C. Hersam, Adv. Funct. Mat. 27, 1703805 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors grateful M.E. Levinshtein for helpful discussions and A.V. Klochkov for the design and software of the setup for measuring the density of low-frequency noise.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by AMI, GVN and ANA. The first draft of the manuscript was written by AMI, GVN and ANA and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to A. N. Aleshin.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Ethical approval

The authors have seen all the Ethical Standards and 500 will suppose to follow them in the future.

Informed consent

The authors agree to participate in the publication.

The authors have seen all the Ethical Standards and will suppose to follow them in the future.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, A.M., Nenashev, G.V. & Aleshin, A.N. Low-frequency noise and impedance spectroscopy of device structures based on perovskite-graphene oxide composite films. J Mater Sci: Mater Electron 33, 21666–21676 (2022). https://doi.org/10.1007/s10854-022-08955-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08955-7

Navigation