Skip to main content

Advertisement

Log in

Improvement of dielectric, optical, and photocatalytic properties of rare earth (Y) substituted Co−Mg nanoferrites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The dielectric, optical and photocatalytic properties of yttrium (Y) substituted cobalt−magnesium (Co0.7Mg0.3YxFe2-xO4) (labeled as CMYF) ferrite nanoparticles have been investigated in detail. All CMYF samples exhibit the normal dispersion for dielectric constant, loss tangent, and conductivity in the frequency range ≤ 5 MHz. The loss tangents for all Y3+ substituted nanoferrites are lower than the pristine Co−Mg sample. Also, the nanoferrite Co0.7Mg0.3Y0.1Fe1.9O4 (x = 0.1) has the lowest loss with decreasing ratio of 85.6% than the pristine nanoferrite. Nyquist plots have only one semicircle, demonstrating that the electrode and grain boundary contributions are the leading cause of the dielectric behavior of all CMYF nanoferrites. Relaxation time increased from 0.04 to 0.53 μs with further Y3+ ions addition. The band gap for all CMYF nanoferrites was calculated using Tauc's plots. The nanoferrite Co0.7Mg0.3Y0.6Fe1.94O4 has the lowest one = 1.48 eV. Peculiarly, MB dye removal utilizing the nanoferrite Co0.7Mg0.3Y0.1Fe1.9O4 has an efficiency of 93.81% after 60 min when compared with 5.81% for pure MB. After five runs, the Co0.7Mg0.3Y0.1Fe1.9O4 catalyst did not lose its significant efficiency and produced an efficiency of 92.96%. Thus, the nanoferrite Co0.7Mg0.3Y0.1Fe1.9O4 has the lowest loss and highest photocatalytic efficiency; this nanoferrite can be exploited for storage data besides their utilization for water treatment applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Some or all data of this study are available from the corresponding author upon reasonable request.

References

  1. M.A. Ahmed, S.F. Mansour, M.A. Abdo, Characterization and dramatic variations of the magnetic properties of Cu-doped nanometric Co ferrite. Phys. Scr. 84(5), 055602 (2011)

    Article  CAS  Google Scholar 

  2. M.A. Abdo, M.S. Sadeq, Covalency and Racah parameters of Fe3+ in Mn–Zn–Cr nanoferrites. Ceram. Int. 47(20), 28237–28239 (2021)

    Article  CAS  Google Scholar 

  3. M.A. Abdo, M.S. Sadeq, Impact of Cr3+ substitution on the nephelauxetic ratio and Racah parameter of Cr-Mn-Zn nanoferrites. Phys. Scr. 97(1), 015804 (2022)

    Article  Google Scholar 

  4. S.F. Mansour, F. Al-Hazmi, M.S. AlHammad, M.S. Sadeq, M.A. Abdo, Enhancing the magnetization, dielectric loss and photocatalytic activity of Co–Cu ferrite nanoparticles via the substitution of rare earth ions. J. Market. Res. 15, 2543–2556 (2021)

    CAS  Google Scholar 

  5. O.K. Mmelesi, N. Masunga, A. Kuvarega, T.T. Nkambule, B.B. Mamba, K.K. Kefeni, Cobalt ferrite nanoparticles and nanocomposites: Photocatalytic, antimicrobial activity and toxicity in water treatment. Mater. Sci. Semicond. Process. 123, 105523 (2021)

    Article  CAS  Google Scholar 

  6. N.S. Al-Bassami, S.F. Mansour, M.A. Abdo, The magneto-mechanical properties of cobalt substituted Mg-Zn nanoferrites. J. Supercond. Novel Magn. 33(10), 3077–3086 (2020)

    Article  CAS  Google Scholar 

  7. M. Irfan, M. Ayyaz, M.Y. Naz, S. Shukrullah, M.M. Munir, K. Kamran, S. Rahman, M. Jalalah, M.K.A. Khan, M. Alsaiari, U.M. Niazi, Testing of optical, dielectric and photocatalytic properties of Ce3+ doped cobalt–cadmium nanocomposite for high frequency devices and wastewater treatment. Ceram. Int. 48(6), 8517–8528 (2022)

    Article  CAS  Google Scholar 

  8. I. Anastopoulos, I. Pashalidis, A.G. Orfanos, I.D. Manariotis, T. Tatarchuk, L. Sellaoui, A. Núñez-Delgado, Removal of caffeine, nicotine and amoxicillin from (waste) waters by various adsorbents. A review. J. Env. Manag. 261, 110236 (2020)

    Article  CAS  Google Scholar 

  9. T.C. Bessy, M.R. Bindhu, J. Johnson, S.M. Chen, T.W. Chen, K.S. Almaary, UV light assisted photocatalytic degradation of textile waste water by Mg0.8-xZnxFe2O4 synthesized by combustion method and in-vitro antimicrobial activities. Env. Res. 204, 111917 (2022)

    Article  CAS  Google Scholar 

  10. L. Sellaoui, M. Badawi, A. Monari, T. Tatarchuk, S. Jemli, G.L. Dotto, Z. Chen, Make it clean, make it safe: a review on virus elimination via adsorption. Chem. Eng. J. 412, 128682 (2021)

    Article  CAS  Google Scholar 

  11. A.B. Abou Hammad, M.E. Abd El-Aziz, M.S. Hasanin, S. Kamel, A novel electromagnetic biodegradable nanocomposite based on cellulose, polyaniline, and cobalt ferrite nanoparticles. Carbohyd. Polym. 216, 54–62 (2019)

    Article  CAS  Google Scholar 

  12. T. Tatarchuk, N. Danyliuk, A. Shyichuk, W. Macyk, M. Naushad, Photocatalytic degradation of dyes using rutile TiO2 synthesized by reverse micelle and low temperature methods: real-time monitoring of the degradation kinetics. J. Mol. Liq. 342, 117407 (2021)

    Article  CAS  Google Scholar 

  13. L. Liu, Y. Lin, Y. Liu, H. Zhu, Q. He, Removal of methylene blue from aqueous solutions by sewage sludge based granular activated carbon: adsorption equilibrium, kinetics, and thermodynamics. J. Chem. Eng. Data 58(8), 2248–2253 (2013)

    Article  CAS  Google Scholar 

  14. S. Ghorai, A. Sarkar, M. Raoufi, A.B. Panda, H. Schönherr, S. Pal, Enhanced removal of methylene blue and methyl violet dyes from aqueous solution using a nanocomposite of hydrolyzed polyacrylamide grafted xanthan gum and incorporated nanosilica. ACS Appl. Mater. Interfaces. 6(7), 4766–4777 (2014)

    Article  CAS  Google Scholar 

  15. K.H. Maria, U.S. Akther, I.N. Esha, M. Hossain, M.N.I. Khan, Estimation of structural, electrical, and magnetic variations of Mn-Ni-Zn ferrites by substituting rare earth Y3+ for high-frequency applications. J. Supercond. Novel Magn. 33(7), 2133–2142 (2020)

    Article  CAS  Google Scholar 

  16. J.B. Shitole, S.N. Keshatti, S.M. Rathod, S.S. Jadhav, Y3+ composition and particle size influenced magnetic and dielectric properties of nanocrystalline Ni0.5Cu0.5YxFe2-xO4 ferrites. Ceram. Int. 47(13), 17993–18002 (2021)

    Article  CAS  Google Scholar 

  17. T.E.P. Alves, H.V.S. Pessoni, A. Franco Jr., The effect of Y3+ substitution on the structural, optical band-gap, and magnetic properties of cobalt ferrite nanoparticles. Phys. Chem. Chem. Phys. 19(25), 16395–16405 (2017)

    Article  CAS  Google Scholar 

  18. M.A. Abdo, S.F. Mansour, N.S. Al-Bassami, N.I. Abu-Elsaad, Yttrium substituted Co–Cu–Zn nanoferrite: A synergetic impact of Y3+ on enhanced physical properties and photocatalysis. Ceram. Int. 48(11), 15314–15326 (2022)

    Article  CAS  Google Scholar 

  19. T.M. Ali, S.M. Ismail, S.F. Mansour, M.A. Abdo, M. Yehia, Physical properties of Al-doped cobalt nanoferrite prepared by citrate–nitrate auto combustion method. J. Mater. Sci.: Mater. Electron. 32(3), 3092–3103 (2021)

    CAS  Google Scholar 

  20. S.F. Mansour, M.A. Abdo, F.L. Kzar, Effect of Cr dopant on the structural, magnetic and dielectric properties of Cu-Zn nanoferrites. J. Magn. Magn. Mater. 465, 176–185 (2018)

    Article  CAS  Google Scholar 

  21. S.F. Mansour, A. Dawood, M.A. Abdo, Enhanced magnetic and dielectric properties of doped Co–Zn ferrite nanoparticles by virtue of Cr3+ role. J. Mater. Sci.: Mater. Electron. 30(18), 17262–17275 (2019)

    CAS  Google Scholar 

  22. M.A. Ahmed, S.F. Mansour, M.A. Abdo, Electrical properties of Cu substituted Co nano ferrite. Phys. Scr. 86(2), 025705 (2012)

    Article  CAS  Google Scholar 

  23. R.A. Pawar, S.S. Desai, S.M. Patange, S.S. Jadhav, K.M. Jadhav, Inter-atomic bonding and dielectric polarization in Gd3+ incorporated Co-Zn ferrite nanoparticles. Physica B 510, 74–79 (2017)

    Article  CAS  Google Scholar 

  24. A.B. Mugutkar, S.K. Gore, U.B. Tumberphale, V.V. Jadhav, R.S. Mane, S.M. Patange, S.S. Jadhav, The role of La3+ substitution in modification of the magnetic and dielectric properties of the nanocrystalline Co-Zn ferrites. J. Magn. Magn. Mater. 502, 166490 (2020)

    Article  CAS  Google Scholar 

  25. S.F. Mansour, M.A. Abdo, Electrical modulus and dielectric behavior of Cr3+ substituted Mg–Zn nanoferrites. J. Magn. Magn. Mater. 428, 300–305 (2017)

    Article  CAS  Google Scholar 

  26. S.F. Mansour, M.A. Ahmed, S.I. El-Dek, M.A. Abdo, H.H. Kora, Enhancement of the physical properties of novel (1–x)NiFe2O4+(x)Al2O3 nanocomposite. Appl. Phys. A 123(7), 1–11 (2017)

    Article  CAS  Google Scholar 

  27. S.F. Mansour, M.A. Abdo, S.M. Alwan, The role of Cr3+ ions substitution on structural, magnetic and dielectric modulus of manganese zinc nanoferrites. Ceram. Int. 44(7), 8035–8042 (2018)

    Article  CAS  Google Scholar 

  28. K. Nadeem, M. Kamran, H.Z. Khokhar, I. Ahmed, F. Zeb, N.A. Noshahi, Effect of Mg doping on magnetic, and dielectric properties of NiCr2O4 nanoparticles. Ceram. Int. 48(12), 17270–17278 (2022)

    Article  CAS  Google Scholar 

  29. M.A. Ahmed, S.F. Mansour, M.A. Abdo, Improvement of the physical properties of novel (1−y) Co0.8Cu0.2Fe2O4+(y) SrTiO3 nanocomposite. Mater. Res. Bull. 48(5), 1796–1805 (2013)

  30. S.F. Mansour, H. Zaher, R. Al-Wafi, H.A. Almossalami, M.A. Abdo, Tuning of structural, magnetic and dielectric properties of M0.45La0.10Fe2.45O4;(M= Mn Co, Cu, Mg and Zn) nanoparticles: effect of particle size and porosity. J. Mater. Sci.: Mater. Electron. 32(2), 1741–1758 (2021)

    CAS  Google Scholar 

  31. S.F. Mansour, M.M. Karamany, R. Al-Wafi, S.I. El-Dek, H.A. Almossalami, M.A. Abdo, The effective role of diamagnetic Pb ions in tailoring the magnetic and dielectric properties of BiFeO3 nanomultiferroic. J. Mater. Sci.: Mater. Electron. 32(3), 3621–3637 (2021)

    CAS  Google Scholar 

  32. Z. Bitar, W. Abdeen, R. Awad, Effect of Er3+ and Pr3+ on the structural, magnetic and dielectric properties of Zn-Co ferrite synthesized via co-precipitation method. Mater. Res. Innovations 24(2), 104–112 (2020)

    Article  CAS  Google Scholar 

  33. I. Ahmad, M.J. Akhtar, M.M. Hasan, Impedance spectroscopic investigation of electro active regions, conduction mechanism and origin of colossal dielectric constant in Nd1−xSrxFeO3 (0.1≤x≤0.5). Mater. Res. Bull. 60, 474–484 (2014)

    Article  CAS  Google Scholar 

  34. H. Rahmouni, M. Nouiri, R. Jemai, N. Kallel, F. Rzigua, A. Selmi, S. Alaya, Electrical conductivity and complex impedance analysis of 20% Ti-doped La0.7Sr0.3MnO3 perovskite. J. Magn. Magn. Mater. 316(1), 23–28 (2007)

    Article  CAS  Google Scholar 

  35. N.M. Basfer, S.F. Mansour, F. Al-Hazmi, Tailored dielectric, optical properties and photocatalytic performance of Mg–Zn nanoferrites by Cu2+ substitution. J. Mater. Sci.: Mater. Electron. 31(19), 16160–16177 (2020)

    CAS  Google Scholar 

  36. N.S. Al-Bassami, S.F. Mansour, AC conductivity, complex impedance and photocatalytic applications of Co2+ substituted Mg–Zn nanoferrite. Appl. Phys. A 127(1), 1–13 (2021)

    Article  CAS  Google Scholar 

  37. L. Sun, R. Zhang, Q. Ni, E. Cao, W. Hao, Y. Zhang, L. Ju, Magnetic and dielectric properties of MgxCo1-xFe2O4 ferrites prepared by the sol-gel method. Physica B 545, 4–11 (2018)

    Article  CAS  Google Scholar 

  38. M. Sriramulu, D. Shukla, S. Sumathi, Aegle marmelos leaves extract mediated synthesis of zinc ferrite: antibacterial activity and drug delivery. Mater. Res. Express 5(11), 115404 (2018)

    Article  CAS  Google Scholar 

  39. M. Sriramulu, D. Shukla, S. Sumathi, Aegle marmelos leaves extract mediated synthesis of zinc ferrite: antibacterial activity and drug delivery. Materials Research Express 5(11), 115404 (2018)

    Article  CAS  Google Scholar 

  40. F. Alahmari, M.A. Almessiere, B. Ünal, Y. Slimani, A. Baykal, Electrical and optical properties of Ni0·5Co0.5-xCdxNd0.02Fe1·78O4 (x≤ 0.25) spinel ferrite nanofibers. Ceram. Int. 46(15), 24605–24614 (2020)

    Article  CAS  Google Scholar 

  41. M.H. Habibi, H.J. Parhizkar, FTIR and UV–vis diffuse reflectance spectroscopy studies of the wet chemical (WC) route synthesized nano-structure CoFe2O4 from CoCl2 and FeCl3. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 127, 102–106 (2014)

    Article  CAS  Google Scholar 

  42. S.K. Durrani, S. Naz, M. Mehmood, M. Nadeem, M. Siddique, Structural, impedance and Mössbauer studies of magnesium ferrite synthesized via sol–gel auto-combustion process. J. Saudi Chem. Soc. 21(8), 899–910 (2017)

    Article  CAS  Google Scholar 

  43. M.P. Dojcinovic, Z.Z. Vasiljevic, V.P. Pavlovic, D. Barisic, D. Pajic, N.B. Tadic, M.V. Nikolic, Mixed Mg–Co spinel ferrites: structure, morphology, magnetic and photocatalytic properties. J. Alloy. Compd. 855, 157429 (2021)

    Article  CAS  Google Scholar 

  44. A. Sengupta, C.K. Sarkar, (eds.), Introduction to Nano: Basics to Nanoscience and Nanotechnology (Springer, 2015), p. 86

  45. E. Gordanian, S. Jalali-Asadabadi, I. Ahmad, S. Rahimi, M. Yazdani-Kachoei, Effects of dangling bonds and diameter on the electronic and optical properties of InAs nanowires. RSC Adv. 5(30), 23320–23325 (2015)

    Article  CAS  Google Scholar 

  46. S.F. Mansour, S. Wageh, R. Al-Wafi, M.A. Abdo, Enhanced magnetic, dielectric properties and photocatalytic activity of doped Mg–Zn ferrite nanoparticles by virtue of Sm3+ role. J. Alloy. Compd. 856, 157437 (2021)

    Article  CAS  Google Scholar 

  47. B.S. Holinsworth, D. Mazumdar, H. Sims, Q.C. Sun, 1 Yurtisigi, S.K. Sarker, J.L. Musfeldt, Chemical tuning of the optical band gap in spinel ferrites: CoFe2O4 vs NiFe2O4. Appl. Phys. Lett. 103(8), 082406 (2013)

    Article  CAS  Google Scholar 

  48. P.A. Vinosha, J.A. Vinsla, J. Madhavan, S. Devanesan, M.S. AlSalhi, M. Nicoletti, B. Xavier, Impact of dysprosium doped (Dy) zinc ferrite (ZnFe2O4) nanocrystals in photo-fenton exclusion of recalcitrant organic pollutant. Environ. Res. 203, 111913 (2022)

    Article  CAS  Google Scholar 

  49. S.A. Jadhav, M.V. Khedkar, S.B. Somvanshi, K.M. Jadhav, Magnetically retrievable nanoscale nickel ferrites: an active photocatalyst for toxic dye removal applications. Ceram. Int. 47(20), 28623–28633 (2021)

    Article  CAS  Google Scholar 

  50. S.F. Mansour, R. Al-Wafi, M.A. Abdo, Zn-Mg-La nanoferrites for storage and high frequency devices with augmenting the photocatalytic performance. J. Alloy. Compd. 826, 154125 (2020)

    Article  CAS  Google Scholar 

  51. M.A. Abdo, A.A. El-Daly, Sm-substituted copper-cobalt ferrite nanoparticles: Preparation and assessment of structural, magnetic and photocatalytic properties for wastewater treatment applications. J. Alloy. Compd. 883, 160796 (2021)

    Article  CAS  Google Scholar 

  52. Y. Zheng, X. Hou, Q. Li, Z. Fang, T. Yang, T. Liang, W. Yang, Electrostatic interaction assisted synthesis of a CdS/BCN heterostructure with enhanced photocatalytic effects. Journal of Materials Chemistry C 8(5), 1803–1810 (2020)

    Article  CAS  Google Scholar 

  53. I. Shakir, P.O. Agboola, S. Haider, Manganese spinel ferrite-reduced graphene oxides nanocomposites for enhanced solar irradiated catalytic studies. Ceram. Int. 47(20), 28367–28376 (2021)

    Article  CAS  Google Scholar 

  54. D. Chahar, S. Taneja, S. Bisht, S. Kesarwani, P. Thakur, A. Thakur, P.B. Sharma, Photocatalytic activity of cobalt substituted zinc ferrite for the degradation of methylene blue dye under visible light irradiation. J. Alloy. Compd. 851, 156878 (2021)

    Article  CAS  Google Scholar 

  55. S. Meena, K.S. Anantharaju, Y.S. Vidya, L. Renuka, B. Uma, S.C. Sharma, S.S. More, Enhanced sunlight driven photocatalytic activity and electrochemical sensing properties of Ce-doped MnFe2O4 nano magnetic ferrites. Ceram. Int. 47(10), 14760–14774 (2021)

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

A.I.M: methodology, formal analysis, writing—original draft, review and editing. N.M.B: supervision, visualization, investigation, writing—original draft, review and editing.

Corresponding author

Correspondence to N. M. Basfer.

Ethics declarations

Conflict of interests

The authors have not disclosed any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammed, A.I., Basfer, N.M. Improvement of dielectric, optical, and photocatalytic properties of rare earth (Y) substituted Co−Mg nanoferrites. J Mater Sci: Mater Electron 33, 21647–21659 (2022). https://doi.org/10.1007/s10854-022-08953-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08953-9

Navigation