Skip to main content

Advertisement

Log in

Highly stable MAPbI3 microcrystals: a single precursor derived from low-grade PbI2 using sono-chemical method for economical and efficient perovskite solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The remarkable performance of organometallic lead halide perovskites in solar cell technology has drawn attention due to their intriguing properties. Commercialization of perovskite solar cell (PSC) technology is hampered by high-cost device fabrication techniques and inadequate stability under ambient conditions. In this study, we used low-grade PbI2 to make highly stable Methylammonium lead Iodide (MAPbI3) powder via sono-chemical method, in order to reduce the cost of the PSCs. The sono-chemical method is used to synthesize MAPbI3 microcrystals because of its significant advantages, including morphological control and educt dissolution support. The tetragonal phase of the synthesized perovskite (MAPbI3) powder was confirmed using PXRD measurement. The synthesized MAPbI3 powder was then subjected to series of analysis, including UV–Vis–NIR absorption, PL Emission, FTIR and TGA. The FESEM and TEM analyses reveal that the size of synthesized MAPbI3 microcrystals is in the range of 0.3–2 μm. The optical and photovoltaic properties of conventional solution-based films and powder-based recrystallization films were studied and compared their performance in the carbon-based perovskite solar cell (C-PSC). The powder-based solar cell exhibits slightly higher power conversion efficiency (10.1%) than the device fabricated by conventional solution-based approach (9.5% for high-grade PbI2 + MAI and 6.8% for low-grade PbI2 + MAI). The enhanced photovoltaic characteristics of the recrystallization-based devices were attributed to the homogeneous perovskite film with large grain size and high crystalline properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The whole datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, S.I. Seok, Nat. Mater 13, 897 (2014)

    Article  CAS  Google Scholar 

  2. F. Zhou, Z. Li, H. Chen, Q. Wang, L. Ding, Z. Jin, Nano Energy 73, 104757 (2020)

    Article  CAS  Google Scholar 

  3. Z. Jin, M. Yuan, H. Li, H. Yang, Q. Zhou, H. Liu, X. Lan, M. Liu, J. Wang, E.H. Sargent, Y. Li, Adv. Funct. Mater. 26, 5284 (2016)

    Article  CAS  Google Scholar 

  4. N. Wang, K. Zhao, T. Ding, W. Liu, A.S. Ahmed, Z. Wang, M. Tian, X.W. Sun, Q. Zhang, Adv. Energy Mater. 7, 1700522 (2017)

    Article  CAS  Google Scholar 

  5. A. García-Fernández, E.J. Juarez-Perez, S. Castro-García, M. Sánchez-Andújar, L.K. Ono, Y. Jiang, Y. Qi, Small Methods 2, 1800242 (2018)

    Article  CAS  Google Scholar 

  6. M.B. Islam, M. Yanagida, Y. Shirai, Y. Nabetani, K. Miyano, Sol. Energy Mater. Sol. Cells 195, 323 (2019)

    Article  CAS  Google Scholar 

  7. J. Bisquert, E.J. Juarez-Perez, J. Phys. Chem. Lett. 10, 5889 (2019)

    Article  CAS  Google Scholar 

  8. R. Hosseinian Ahangharnejhad, Z. Song, T. Mariam, J.J. Gardner, G.K. Liyanage, Z.S. Almutawah, B.M.M. Anwar, M. Junda, N.J. Podraza, A.B. Phillips, Y. Yan, M.J. Heben, ACS Appl. Energy Mater. 4, 7571 (2021)

    Article  CAS  Google Scholar 

  9. K. Domanski, J.-P. Correa-Baena, N. Mine, M.K. Nazeeruddin, A. Abate, M. Saliba, W. Tress, A. Hagfeldt, M. Grätzel, ACS Nano 10, 6306 (2016)

    Article  CAS  Google Scholar 

  10. J. Shi, J. Dong, S. Lv, Y. Xu, L. Zhu, J. Xiao, X. Xu, H. Wu, D. Li, Y. Luo, Q. Meng, Appl. Phys. Lett. 104, 063901 (2014)

    Article  CAS  Google Scholar 

  11. S. Narendhiran, A. Kunka Ravindran, I.D. Rajan Thomas, S.P. Muthu, R. Perumalsamy, Int. J. Energy Res. 46, 1565 (2022)

    Article  CAS  Google Scholar 

  12. J. Chang, H. Zhu, B. Li, F.H. Isikgor, Y. Hao, Q. Xu, J. Ouyang, J. Mater. Chem. A 4, 887 (2016)

    Article  CAS  Google Scholar 

  13. Y. Zhang, S.-G. Kim, D.-K. Lee, N.-G. Park, ChemSusChem 11, 1813 (2018)

    Article  CAS  Google Scholar 

  14. Y. Dang, Y. Liu, Y. Sun, D. Yuan, X. Liu, W. Lu, G. Liu, H. Xia, X. Tao, CrystEngComm 17, 665 (2015)

    Article  CAS  Google Scholar 

  15. T. Baikie, Y. Fang, J.M. Kadro, M. Schreyer, F. Wei, S.G. Mhaisalkar, M. Graetzel, T.J. White, J. Mater. Chem. A 1, 5628 (2013)

    Article  CAS  Google Scholar 

  16. J. Chen, S. Zhou, S. Jin, H. Li, T. Zhai, J. Mater. Chem. C 4, 11 (2016)

    Article  CAS  Google Scholar 

  17. M.B. Johansson, L. Xie, B.J. Kim, J. Thyr, T. Kandra, E.M.J. Johansson, M. Göthelid, T. Edvinsson, G. Boschloo, Nano Energy 78, 105346 (2020)

    Article  CAS  Google Scholar 

  18. C. Xiao, Z. Li, H. Guthrey, J. Moseley, Y. Yang, S. Wozny, H. Moutinho, B. To, J.J. Berry, B. Gorman, Y. Yan, K. Zhu, M. Al-Jassim, J. Phys. Chem. C 119, 26904 (2015)

    Article  CAS  Google Scholar 

  19. S. Pitchaiya, M. Natarajan, A. Santhanam, V. Asokan, V. Madurai Ramakrishnan, Y. Selvaraj, A. Yuvapragasam, B. Rangasamy, S. Sundaram, D. Velauthapillai, Mater. Res. Bull. 108, 61 (2018)

    Article  CAS  Google Scholar 

  20. D. Prochowicz, M. Franckevičius, A.M. Cieślak, S.M. Zakeeruddin, M. Grätzel, J. Lewiński, J. Mater. Chem. A 3, 20772 (2015)

    Article  CAS  Google Scholar 

  21. M. Luan, J. Song, X. Wei, F. Chen, J. Liu, CrystEngComm 18, 5257 (2016)

    Article  CAS  Google Scholar 

  22. P.S. Whitfield, N. Herron, W.E. Guise, K. Page, Y.Q. Cheng, I. Milas, M.K. Crawford, Sci. Rep. 6, 35685 (2016)

    Article  CAS  Google Scholar 

  23. M.A. Green, A. Ho-Baillie, H.J. Snaith, Nat. Photon 8, 506 (2014)

    Article  CAS  Google Scholar 

  24. C. Wu, D. Guo, P. Li, S. Wang, A. Liu, F. Wu, Phys. Chem. Chem. Phys. 22, 3105 (2020)

    Article  CAS  Google Scholar 

  25. T.J. Jacobsson, J.-P. Correa-Baena, E. Halvani Anaraki, B. Philippe, S.D. Stranks, M.E.F. Bouduban, W. Tress, K. Schenk, J. Teuscher, J.-E. Moser, H. Rensmo, A. Hagfeldt, J. Am. Chem. Soc. 138, 10331 (2016)

    Article  CAS  Google Scholar 

  26. Q. Wang, B. Chen, Y. Liu, Y. Deng, Y. Bai, Q. Dong, J. Huang, Energy Environ. Sci. 10, 516 (2017)

    Article  CAS  Google Scholar 

  27. V. Kumar, J. Barbé, W.L. Schmidt, K. Tsevas, B. Ozkan, C.M. Handley, C.L. Freeman, D.C. Sinclair, I.M. Reaney, W.C. Tsoi, A. Dunbar, C. Rodenburg, J. Mater. Chem. A 6, 23578 (2018)

    Article  CAS  Google Scholar 

  28. W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A.J. Neukirch, G. Gupta, J.J. Crochet, M. Chhowalla, S. Tretiak, M.A. Alam, H.-L. Wang, A.D. Mohite, Science 347, 522 (2015)

    Article  CAS  Google Scholar 

  29. X. Hou, S. Huang, W. Ou-Yang, L. Pan, Z. Sun, X. Chen, ACS Appl. Mater. Interfaces 9, 35200 (2017)

    Article  CAS  Google Scholar 

  30. R. Singh, S.R. Suranagi, M. Kumar, V.K. Shukla, J. Appl. Phys. 122, 235302 (2017)

    Article  CAS  Google Scholar 

  31. J. Yang, B.D. Siempelkamp, D. Liu, T.L. Kelly, ACS Nano 9, 1955 (2015)

    Article  CAS  Google Scholar 

  32. Y.H. Soo, S.A. Ng, Y.H. Wong, C.Y. Ng, J. Mater. Sci: Mater. Electron. 32, 14885 (2021)

    CAS  Google Scholar 

  33. S. De Wolf, J. Holovsky, S.-J. Moon, P. Löper, B. Niesen, M. Ledinsky, F.-J. Haug, J.-H. Yum, C. Ballif, J. Phys. Chem. Lett. 5, 1035 (2014)

    Article  CAS  Google Scholar 

  34. Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, J. Huang, Science 347, 967 (2015)

    Article  CAS  Google Scholar 

  35. M.-R. Ahmadian-Yazdi, M. Habibi, M. Eslamian, Appl. Sci. 8, 308 (2018)

    Article  CAS  Google Scholar 

  36. M. Duan, Y. Rong, A. Mei, Y. Hu, Y. Sheng, Y. Guan, H. Han, Carbon 120, 71 (2017)

    Article  CAS  Google Scholar 

  37. Y. Yang, J. Luo, N. Luo, A. Wei, J. Liu, Y. Zhao, Z. Xiao, J. Electr. Mater. 49, 7044 (2020)

    Article  CAS  Google Scholar 

  38. C. Momblona, O. Malinkiewicz, C. Roldán-Carmona, A. Soriano, L. Gil-Escrig, E. Bandiello, M. Scheepers, E. Edri, H.J. Bolink, APL Mater. 2, 081504 (2014)

    Article  CAS  Google Scholar 

  39. Y. Hou, X. Du, S. Scheiner, D.P. McMeekin, Z. Wang, N. Li, M.S. Killian, H. Chen, M. Richter, I. Levchuk, N. Schrenker, E. Spiecker, T. Stubhan, N.A. Luechinger, A. Hirsch, P. Schmuki, H.-P. Steinrück, R.H. Fink, M. Halik, H.J. Snaith, C.J. Brabec, Science 358, 1192 (2017)

    Article  CAS  Google Scholar 

  40. Y. Wen, G. Zhu, Y. Shao, J. Mater. Sci. 55, 2937 (2020)

    Article  CAS  Google Scholar 

  41. J. Lee, S. Baik, RSC Adv. 8, 1005 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Department of Science & Technology–Solar Energy Research Initiative (DST-SERI) (DST/TMD/SERI/S76 (G)), Government of India, for the financial support. One of the authors N. Balagowtham thanks the management of Sri Sivasubramaniya Nadar College of Engineering for providing SSN Junior Research Assistant (JRA).

Funding

The authors have no relevant financial or non-financial interest to disclose.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection and analysis were performed by NB, KRA, NS, MSP and PR. The first draft of the manuscript was written by NB and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to N. Balagowtham.

Ethics declarations

Conflict of interest

I am enclosing the manuscript entitled “Highly Stable MAPbI3 Microcrystals: A Single Precursor Derived from Low-Grade PbI2 using Sono-chemical Method for Economical and Efficient Perovskite Solar Cells” for publication in your esteemed journal of “Journal of Material Science Materials in Electronics”. The authors certify that the manuscript is an original article, is not under consideration by any other journal and has not been published previously. The authors are aware of its content and approve this submission. No conflict of interest exists in this submission.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3104.1 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balagowtham, N., Acchutharaman, K.R., Santhosh, N. et al. Highly stable MAPbI3 microcrystals: a single precursor derived from low-grade PbI2 using sono-chemical method for economical and efficient perovskite solar cells. J Mater Sci: Mater Electron 33, 21531–21545 (2022). https://doi.org/10.1007/s10854-022-08944-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08944-w

Navigation