Skip to main content

Advertisement

Log in

Structural, optical and dielectric properties of aluminum-substituted SrAl2xFe12-2xO19 x = (0.0,0.2,0.4,0.6,0.8,1.0) M-type hexagonal ferrites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Aluminum-substituted M-type hexaferrites with nominal composition SrAl2xFe12-2xO19 with x = (0.0,0.2,0.4,0.6,0.8,1.0) were successfully prepared by sol gel auto combustion route. The confirmation of M-type hexagonal ferrites with high purity phase was done by the XRD analysis. Lattice parameters a and c, c/a ratio and cell volume have been calculated. Lattice parameter ‘a’ varies from (5.86–5.88) Å, ‘c’ varies from (22.87 to 23.08) Å, Cell volume lies in the range of (687.10–688.90) Å3 and crystallite size varies from 39 to 61 nm. Optical properties of materials were determined by optical bandgap. The value of bandgap Eg was decreased linearly with the increase of Aluminum substitution and it approaches to maximum within energy range of 1.74 to 2.80 eV. Permittivity, permit loss, tan loss, ac conductivity, real and imaginary parts of electric modulus was also discussed. Maximum value of dielectric constant (15.5) was obtained for SrAl2xFe12-2xO19 at x = 1.0 composition at 2.5 GHz frequency. Similarly Maximum Q-value was obtained for this composition. On the basis of space charge polarization and hopping of electrons between Fe3+ and Fe2+, the observed change in dielectric parameters have been explained. The Maxwell Wagner and Koop's models have been used to explain the change in ac conductivity as a function of frequency. Based on these properties, the prepared materials are highly recommended in high frequency devices such as modulator, sensing, switching, security and energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. M. Zahid et al., Enhanced structural and dielectric properties of calcium and chromium based M-type hexagonal ferrites. J. Mater. Sci.: Mater. Electron. 32(7), 9183–9193 (2021)

    CAS  Google Scholar 

  2. H.M. Khan et al., Effect of binary mixture of Nd–Zn ions on the electrical, structural and dielectric behavior of calcium-barium M-type hexaferrite nanoparticles. Indian J. Phys. 95(5), 871–879 (2021)

    Article  CAS  Google Scholar 

  3. W. Mohamed et al., Impact of Cu2+ cations substitution on structural, morphological, optical and magnetic properties of Co1-xCuxFe2O4 nanoparticles synthesized by a facile hydrothermal approach. Solid State Sci. 125, 106841 (2022)

    Article  CAS  Google Scholar 

  4. S. Honey, H.M. Khan, Influence of beam energy of ions on properties of nickel nanowires. Surf. Rev. Lett. 29(2), 2250028 (2022)

    Article  Google Scholar 

  5. W. Mohamed, A.M. Abu-Dief, Impact of rare earth europium (RE-Eu3+) ions substitution on microstructural, optical and magnetic properties of CoFe2− xEuxO4 nanosystems. Ceram. Int. 46(10), 16196–16209 (2020)

    Article  CAS  Google Scholar 

  6. W. Mohamed et al., Impact of Co2+ substitution on microstructure and magnetic properties of CoxZn1-xFe2O4 nanoparticles. Nanomaterials 9(11), 1602 (2019)

    Article  CAS  Google Scholar 

  7. A.M. Abu-Dief, I.F. Nassar, W.H. Elsayed, Magnetic NiFe2O4 nanoparticles: efficient, heterogeneous and reusable catalyst for synthesis of acetylferrocene chalcones and their anti-tumour activity. Appl. Organomet. Chem. 30(11), 917–923 (2016)

    Article  CAS  Google Scholar 

  8. M. Zahid et al., Structural, morphological, dielectric and magnetic properties of Ba1− xCrxFe12O19 M type hexaferrites. Phys. Scr. 96(12), 125405 (2021)

    Article  Google Scholar 

  9. N. Yasmin et al., Structural and dielectric properties of Gd-Zn substituted Ca0.5Ba0.5Fe12O19 M-type hexa-ferrites synthesized via auto-combustion method. J. Alloys Compds. 774, 962–968 (2019)

    Article  CAS  Google Scholar 

  10. M. Wajad et al., Structural elucidation, morphological properties, and dielectric properties of nickel-substituted cobalt and lead-based X-type hexagonal ferrites. J. Mater. Eng. Perform. 31(3), 1914–1924 (2022)

    Article  CAS  Google Scholar 

  11. M. Zahid et al., Structural elucidation with improved dielectric and magnetic properties of sol-gel synthesized Cr3+ substituted M-type Sr2+ hexaferrites. J. Mater. Eng. Perform. 31(2), 1530–1539 (2022)

    Article  CAS  Google Scholar 

  12. H.M. Khan, M.U. Islam, Yongbing Xu, M.A. Iqbal, I. Ali, Structural and magnetic properties of TbZn-substituted calcium barium M-type nano-structured hexa-ferrites. J. Alloys Compd. 589, 258–262 (2014)

    Article  CAS  Google Scholar 

  13. M.N. Ashiq et al., Fabrication, structural, dielectric and magnetic properties of tantalum and potassium doped M-type strontium calcium hexaferrites. J. Alloy Compd. 651, 266–272 (2015)

    Article  CAS  Google Scholar 

  14. H. Luo et al., Physical and magnetic properties of highly aluminum doped strontium ferrite nanoparticles prepared by auto-combustion route. J. Magn. Magn. Mater. 324(17), 2602–2608 (2012)

    Article  CAS  Google Scholar 

  15. M. Idrees, F. Abbas, I. Sadiq, H.M. Khan, F. Sadiq, M. Nadeem, S. Hussain, S. Riaz, S. Naseem, Theoretical and experimental investigations: Synergetic effect of Yb–Cu substitution on different properties of hexagonal ferrites. J. Phys. Chem. Solids 170, 110904 (2022)

    Article  CAS  Google Scholar 

  16. M. Zahid et al., Structural, morphological, dielectric, and magnetic properties of Pb1-xCrxFe12O19 M-type hexaferrites. Mater. Sci. Eng., B 280, 115707 (2022)

    Article  CAS  Google Scholar 

  17. M. Mujahid et al., Synthesis and characterization of aluminum and cobalt substituted W type hexagonal ferrites. J. Nanoscope 01, 65–72 (2020)

    Article  Google Scholar 

  18. N. Fatima et al., SYNTHESIS AND CHARACTERIZATION OF COBALT SUBSTITUTED W TYPE HEXAGONAL FERRITES. Dig. J. Nanomater. Biostruct. 16(1), 93–100 (2021)

    Google Scholar 

  19. E.M.M. Ibrahim et al., Electrical, thermoelectrical and magnetic properties of approximately 20-nm Ni-Co-O nanoparticles and investigation of their conduction phenomena. Mater. Chem. Phys. 192, 41–47 (2017)

    Article  CAS  Google Scholar 

  20. E. Ibrahim et al., Electric, thermoelectric and magnetic characterization of γ-Fe2O3 and Co3O4 nanoparticles synthesized by facile thermal decomposition of metal-Schiff base complexes. Mater. Res. Bull. 99, 103–108 (2018)

    Article  CAS  Google Scholar 

  21. E. Ibrahim et al., The synthesis of CuO and NiO nanoparticles by facile thermal decomposition of metal-Schiff base complexes and an examination of their electric, thermoelectric and magnetic Properties. Mater. Res. Bull. 107, 492–497 (2018)

    Article  CAS  Google Scholar 

  22. L.H. Abdel Rahman et al., Sonochemical synthesis, structural inspection and semiconductor behavior of three new nano sized Cu (II), Co (II) and Ni (II) chelates based on tri-dentate NOO imine ligand as precursors for metal oxides. Appl. Organomet. Chem. 32(3), e4174 (2018)

    Article  CAS  Google Scholar 

  23. A. Verma et al., Lattice parameter variation and its effect on precipitation behaviour of ordered Ni2 (Cr, Mo) phase in Ni-Cr-Mo alloys. J. Alloy Compd. 813, 152195 (2020)

    Article  CAS  Google Scholar 

  24. M. Nadeem et al., Structural, dielectric, and magnetic properties of CaBaCo2-xZnxNdyFe12-yO22 Y-type hexaferrites. J. Mater. Sci.: Mater. Electron. 33, 6294–6306 (2022)

    CAS  Google Scholar 

  25. A.B. Abou Hammad, A.M. Mansour, A.M. El Nahrawy, Ni2+doping effect on potassium barium titanate nanoparticles: enhancement optical and dielectric properties. Phys. Scr. 96(12), 125821 (2021)

    Article  Google Scholar 

  26. A.M. El ahrawy, A.B. Abou Hammad, A.M. Mansour, Preparation and characterization of transparent semiconducting silica nanocomposites doped with P2O5 and Al2O3. Silicon 13(10), 3733–3739 (2021)

    Article  CAS  Google Scholar 

  27. A.M. Mansour, A.B. Abou Hammad, A.M. El Nahrawy, Sol–gel synthesis and physical characterization of novel MgCrO4-MgCu2O3 layered films and MgCrO4-MgCu2O3/p-Si based photodiode. NanoStruct. NanoObjects 25, 100646 (2021)

    CAS  Google Scholar 

  28. H.M. Khan, M.U. Islam, Yongbing Xu, M.N. Ashiq, I. Ali, M. Asif Iqbal, M. Ishaque, Structural and magnetic properties of Pr-Ni substituted Ca0.5Ba0.5Fe12O19 hexa-ferrite nanoparticles. Ceram. Int. 40(5), 6487–6493 (2014)

    Article  CAS  Google Scholar 

  29. D. Meher, N. Karna, B. Sahoo, Development of Poly (vinylidene fluoride) and polyaniline blend with high dielectric permittivity, excellent electromagnetic shielding effectiveness and ultra low optical energy band gap: effect of ionic liquid and temperature. Polymer 181, 121759 (2019)

    Article  CAS  Google Scholar 

  30. S. Chattopadhyay et al., Correlated quartic variation of band gap and NBE energy in sol-gel derived Zn1− xCoxO nanoparticles. Mater. Chem. Phys. 227, 236–241 (2019)

    Article  CAS  Google Scholar 

  31. M. Zahid, Enhanced structural and dielectric properties of calcium and chromium-based M-type hexagonal ferrites with polyvinyl alcohol (PVA) polymer composites. Nano 17(06), 2250048 (2022)

    Article  CAS  Google Scholar 

  32. M.A. Iqbal et al., Effect of Gd-substitiution on physical and magnetic properties of Li1.2Mg0.4 Gdx Fe (2–x) O4 ferrites. J Alloys Compds. 579, 181–186 (2013)

    Article  CAS  Google Scholar 

  33. H.M. Khan et al., Electrical transport properties and temperature-dependent magnetization behavior of TbZn-substituted Ca0.5Ba0.5Fe12O19 hexaferrites. J. Sol-Gel Sci. Technol. 78(1), 151–158 (2016)

    Article  CAS  Google Scholar 

  34. H.M. Khan et al., Structural, magnetic, and microwave properties of NdZn-substituted Ca0.5Ba0.5Fe12O19 hexaferrites. J. Sol-Gel Sci. Technol. 75(2), 305–312 (2015)

    Article  CAS  Google Scholar 

  35. I. Sadiq et al., Study of structural, magnetic and microwave absorption properties of Dy-Mn substituted nanosized material in X-band frequency range. J. Alloy Compd. 715, 284–290 (2017)

    Article  CAS  Google Scholar 

  36. H.M. Khan et al., Tuning of structural and dielectric properties of X type hexaferrite through Co and Zn variation. J. Alloy Compd. 909, 164529 (2022)

    Article  CAS  Google Scholar 

  37. R. Megha et al., AC conductivity studies in copper decorated and zinc oxide embedded polypyrrole composite nanorods: Interfacial effects. Mater. Sci. Semicond. Process. 110, 104963 (2020)

    Article  CAS  Google Scholar 

  38. H.M. Khan, Z. Mirrani, A. Waheed, J. Ahmad, M.E. Mazhar, M.N. Usmani, I. Syed, S. Bakhtawar, I. Ahmad, W. Abbas, R. Naz, S. Ahmad, M. Mahmood, Synthesis and characterization of rare earth substituted M-type (Sr-Ba) hexaferrites. J. Ovonic Res. 16(5), 281–291 (2020)

    Google Scholar 

  39. A.B. Abou Hammad et al., Exploring the ferroelectric effect of nanocrystalline strontium zinc titanate/Cu: Raman and antimicrobial activity. J. Mater. Sci.: Mater. Electron. 31(10), 7850–7861 (2020)

    CAS  Google Scholar 

  40. M. Ishaque et al., Impacts of yttrium substitution on FMR line-width and magnetic properties of nickel spinel ferrites. J. Magn. Magn. Mater. 382, 98–103 (2015)

    Article  CAS  Google Scholar 

  41. I. Ali et al., Effect of Eu–Ni substitution on electrical and dielectric properties of Co–Sr–Y-type hexagonal ferrite. Mater. Res. Bull. 49, 338–344 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M.A.A. appreciates the support of the Research Center for Advanced Materials Science (RCAMS) at King Khalid University Abha, Saudi Arabia, through grant KKU/RCAMS-G015/21.

Author information

Authors and Affiliations

Authors

Contributions

MD: experimental work, characterization, investigation, writing—original draft. HMK: formal analysis, data curation, review. MZ: investigation, methodology, visualization. MAA: investigation, methodology, MI: visualization.

Corresponding author

Correspondence to Hasan M. Khan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Research involving human or animal participants

This article does not contain any studies involving humans or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dilshad, M., Khan, H.M., Zahid, M. et al. Structural, optical and dielectric properties of aluminum-substituted SrAl2xFe12-2xO19 x = (0.0,0.2,0.4,0.6,0.8,1.0) M-type hexagonal ferrites. J Mater Sci: Mater Electron 33, 21519–21530 (2022). https://doi.org/10.1007/s10854-022-08943-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08943-x

Navigation