Skip to main content
Log in

Development of radiochromic dosimeters based on polymer films with fluoran and divinyl phthalide dyes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We fabricated polyvinyl chloride (PVC) and poly(methyl methacrylate) (PMMA) films containing NIR Black78, Black100 and Black400 for use as dosimeters in radiotherapy, and measured the absorption spectrum of these films before and after X-ray irradiation. Absorption peaks were observed at 456 and 592 nm in the PVC films containing Black400. This result indicates that oxidation reactions of Black400 occurred, suggesting that the radicals generated from PVC by X-ray radiation induced this oxidation. The X-ray sensitivity of the PVC films containing 1.0 wt% Black400 was 28 mm−1 kGy−1, 2.5–70 times higher than that of other polymers containing leuco dyes. The lower limit of detection of 1 mm-thick PVC films containing 1.0 wt% Black400 was 0.17 Gy, rendering them promising for use as dosimeters in radiotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data presented in this study are available within this article.

References

  1. F. Maria, Chan, Recent Advancements and Applications in Dosimetry (Nova Medical & Health, Hauppauge, 2018)

    Google Scholar 

  2. T. Yanagida et al., J. Lumin. 207, 14–21 (2019)

    Article  CAS  Google Scholar 

  3. T. Yanagida, M. Koshimizu, Phosphors for Radiation Detectors (Wiley, New York, 2022)

    Book  Google Scholar 

  4. G.G. Jayson et al., Int. J. Radiat. Phys. Chem. 7, 363 (1975)

    Article  CAS  Google Scholar 

  5. C. Baldock et al., Phys. Med. Biol. 55, R1 (2010)

    Article  CAS  Google Scholar 

  6. L.J. Schreiner, J. Phys. Conf. Ser. 3, 9 (2004)

    Article  CAS  Google Scholar 

  7. K. Kinashi et al., Chem. Commun. 51, 11170 (2015)

    Article  CAS  Google Scholar 

  8. H. Tsuchida et al., New J. Chem. 40, 8658 (2016)

    Article  CAS  Google Scholar 

  9. K. Kinashi et al., J. Phys. Org. Chem. 25, 427 (2012)

    Article  CAS  Google Scholar 

  10. S. Irie, M. Irie, Chem. Lett. 35, 1434 (2006)

    Article  CAS  Google Scholar 

  11. T. Yamaguchi, M. Irie, Tetrahedron Lett. 61, 152232 (2020)

    Article  CAS  Google Scholar 

  12. K. Asai et al., Radiat. Meas. 106, 166 (2017)

    Article  CAS  Google Scholar 

  13. I. Kawamura et al., Jpn. J. Appl. Phys. 59, 046004 (2020)

    Article  CAS  Google Scholar 

  14. I. Kawamura et al., Jpn. J. Appl. Phys. 58, 022003 (2019)

    Article  CAS  Google Scholar 

  15. K. Asai et al., Nuclear Inst. Methods Phys. Res., A 954, 161828 (2020).

  16. S. Irie et al., Bull. Chem. Soc. Jpn. 72, 1139 (1999)

    Article  CAS  Google Scholar 

  17. K. Asai et al., J. Mater. Sci.: Mater. Electron. 30, 10211 (2019)

    CAS  Google Scholar 

  18. K. Jordan, N. Avvakumov, Phys. Med. Biol. 54, 6773 (2009)

    Article  CAS  Google Scholar 

  19. S. Babic et al., Phys. Med. Biol. 54, 6791 (2009)

    Article  CAS  Google Scholar 

  20. T. Fujiwara et al., Radiat. Meas. 135, 106376 (2020)

    Article  CAS  Google Scholar 

  21. D. Khezerloo et al., Radiat. Phys. Chem. 141, 88 (2017)

    Article  CAS  Google Scholar 

  22. I. Kawamura et al., Jpn. J. Appl. Phys. 60, 036003 (2021)

    Article  CAS  Google Scholar 

  23. I. Kawamura et al., Jpn. J. Appl. Phys. 59, 096001 (2020)

    Article  CAS  Google Scholar 

  24. H.H. Mai et al., Radiat. Phys. Chem. 77, 457 (2008)

    Article  CAS  Google Scholar 

  25. Y.S. Soliman, A.A. Abdel-Fattah, Radiat. Meas. 49, 1 (2013)

    Article  CAS  Google Scholar 

  26. A.E. Buenfil-Burgos et al., Radiat. Phys. Chem. 22, 325 (1983)

    CAS  Google Scholar 

  27. M. Kattan et al., Radiat. Phys. Chem. 76, 1195 (2007)

    Article  CAS  Google Scholar 

  28. H.H. Mai et al., Radiat. Phys. Chem. 69, 439 (2004)

    Article  CAS  Google Scholar 

  29. S.H. Shinde et al., J. Technol. Sci. 30, 76 (2019)

    Google Scholar 

  30. R. Tanaka et al., J. Mater. Sci.: Mater. Electron. 33, 3938 (2022)

    CAS  Google Scholar 

  31. C. Linda, Sawyer, Polymer Microscopy (Springer, New York, 2012)

    Google Scholar 

  32. G.W. Kim et al., Adv. Opt. Mater. 6, 1701382 (2018)

    Article  Google Scholar 

  33. G. Xi et al., Nat. Commun. 9, 4819 (2018)

    Article  Google Scholar 

  34. H. Kaiser, Fresenius Z. Anal. Chem. 209, 1 (1965)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Grant-in-Aid for Scientific Research (A) (Nos. 18H03890, 2018–2021; 22H00308, 2022–2025). Part of this research is based on the Cooperative Research Project of the Research Center for Biomedical Engineering, Ministry of Education, Culture, Sports, Science, and Technology.

Author information

Authors and Affiliations

Authors

Contributions

Writing, preparation of the original draft and investigation were done by TE; conceptualization, methodology validation, formal analysis, writing, reviewing, editing of the manuscript, supervision, project administration and funding acquisition were done by MK; writing, reviewing, editing of the manuscript, supervision and project administration were done by YF; writing, reviewing, editing of the manuscript, supervision and project administration were done by KA; all the authors have read the manuscript and have approved this submission.

Corresponding author

Correspondence to Toshiya Endo.

Ethics declarations

Conflict of interest

There is no conflict to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Endo, T., Koshimizu, M., Fujimoto, Y. et al. Development of radiochromic dosimeters based on polymer films with fluoran and divinyl phthalide dyes. J Mater Sci: Mater Electron 33, 21472–21481 (2022). https://doi.org/10.1007/s10854-022-08938-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08938-8

Navigation