Skip to main content
Log in

Improved electrical, thermal, and mechanical properties of silicone rubber-based composite dielectrics by introducing one-dimensional SiC fillers

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, two kinds of one-dimensional (1D) silicon carbide (SiC) fillers, including silicon carbide whiskers (SiCw) and silicon carbide nanowires (SiCn) were filled into silicone rubber (SiR), respectively. The effect of 1D-SiC fillers on the microstructure and electrical, thermal, and mechanical properties of the SiCw/SiR and SiCn/SiR composite dielectrics have been systematically studied. The results show that the SiCn/SiR composites exhibit excellent nonlinear conductivity and thermal properties as compared to the SiCw/SiR composites due to the relatively large length−diameter of SiCn, with a maximum nonlinear coefficient and thermal conductivity of 0.69 and 0.229 W/(m·K), respectively and stronger mechanical property. However, the DC breakdown strength degrades seriously with the increase in the 1D-SiC filler content. The measuring temperature also has a significant effect on the DC conductivity and DC breakdown strength properties of the SiR-based composite dielectric. Besides, the internal electric field of the cable accessories was simulated using COMSOL Multiphysics software and the results verify that the use of both SiC/SiR-based composite dielectrics as reinforced insulation significantly homogenized the internal electric field of the cable attachment as compared to SiR, with a reduction of up to 96.75% in the electric field at the root of the stress cone under steady-state conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. T. Tanaka, G.C. Montanari, R. Mulhaupt, IEEE Trans. Dielectr. Electr. Insul. 11, 5 (2004)

    Google Scholar 

  2. Y. Zhou, S.M. Peng, J. Hu, J.L. He, IEEE Trans. Dielectr. Electr. Insul. 24, 3 (2017)

    Google Scholar 

  3. X.X. Zhou, J. Yi, R.H. Song, X.Y. Yang, Y. Li, H.Y. Tang, Energy 35, 11 (2010)

    Google Scholar 

  4. J. Li, B.X. Du, X.X. Kong, Z.L. Li, IEEE Trans. Dielectr. Electr. Insul. 24, 3 (2017)

    Google Scholar 

  5. B.X. Du, Z.L. Yang, Z.L. Li, J. Li, IEEE Trans. Dielectr. Electr. Insul. 26, 3 (2019)

    Google Scholar 

  6. Y.D. Chen, K. Zhou, X.C. Ren, S.J. Chen, Z.R. Li, Polym. Compos. 41, 9 (2020)

    Google Scholar 

  7. L. Jin, B.X. Du, X. Hang, IEEE Trans. Dielectr. Electr. Insul. 24, 3 (2017)

    Google Scholar 

  8. C. Dang, D. Fournier, IEEE Trans. Power Deliv. 12, 1 (1997)

    Google Scholar 

  9. Y. Luo, Z.Y. Han, M.Y. Zhou, H.T. Wang, Energies 13, 11 (2020)

    Google Scholar 

  10. T. Christen, L. Donzel, F. Greuter, I.E.E.E. Electr, Insul. Mag. 26, 6 (2010)

    Google Scholar 

  11. Z.H. Yang, P.H. Hu, S.J. Wang, J.W. Zha, Z.C. Guo, Z.M. Dang, IEEE Trans. Dielectr. Electr. Insul. 24, 3 (2017)

    Google Scholar 

  12. H.C. Liang, B.X. Du, J. Li, Z.L. Li, A. Li, IET Sci. Meas. Technol. 12, 1 (2018)

    Google Scholar 

  13. L. Donzel, F. Greuter, T. Christen, I.E.E.E. Electr, Insul. Mag. 27(2), 18–29 (2011)

    Google Scholar 

  14. Z.L. Li, Z.R. Yang, B.X. Du, IEEE Access (2018). https://doi.org/10.1109/ACCESS.2018.2889343

    Google Scholar 

  15. N.Q. Shang, Q.G. Chen, X.Z. Wei, Materials 11, 3 (2018)

    Google Scholar 

  16. Z.L. Li, B.X. Du, Z.R. Yang, J. Li, IEEE Trans. Dielectr. Electr. Insul. 24, 4 (2017)

    Google Scholar 

  17. Q.G. Chi, Z. Li, T.D. Zhang, C.H. Zhang, IEEE Trans. Dielectr. Electr. Insul. 26, 3 (2019)

    Google Scholar 

  18. B.X. Du, C. Han, Z.L. Li, IEEE Trans. Dielectr. Electr. Insul. 28, 3 (2021)

    Google Scholar 

  19. X.L. Zhao, X. Yang, J. Hu, Q. Li, J.L. He, Compos. Sci. Technol. (2019). https://doi.org/10.1016/j.compscitech.2019.03.018

    Google Scholar 

  20. J.J. Park, J.Y. Lee, Trans. Electr. Electron. Mater. 21, 1 (2020)

    CAS  Google Scholar 

  21. S. Boggs, D.H. Damon, J. Hjerrild, J.T. Holboll, M. Henriksen, IEEE Trans. Power Deliv. 16, 4 (2001)

    Google Scholar 

  22. T.T.N. Vu, G. Teyssedre, B. Vissouvanadin, S.L. Roy, C. Laurent, IEEE Trans. Dielectr. Electr. Insul. 22, 1 (2015)

    Google Scholar 

  23. L. Gao, X. Yang, J. Hu, J.L. He, Mater. Lett. (2016). https://doi.org/10.1016/j.matlet.2016.02.016

    Google Scholar 

  24. J. Su, J. Zhang, Appl. Surf. Sci. (2016). https://doi.org/10.1016/j.apsusc.2015.10.156

    Google Scholar 

  25. H.J. Choi, J.G. Lee, Ceram. Int. 26, 1 (2000)

    CAS  Google Scholar 

  26. J.L. Kuang, W.B. Cao, J. Am. Ceram. Soc. 96, 9 (2013)

    Google Scholar 

  27. Y.F. Zhang, X.D. Han, K. Zheng, Z. Zhang, X.N. Zhang, J.Y. Fu, Y. Ji, Y.J. Hao, X.Y. Guo, Z.L. Wang, Adv. Funct. Mater. 17, 17 (2007)

    Google Scholar 

  28. Q.G. Chi, S. Cui, T.D. Zhang, M. Yang, Q.G. Chen, IEEE Trans. Dielectr. Electr. Insul. 27, 2 (2020)

    Google Scholar 

  29. R. StruMpler, J. Glatz-Reichenbach, J. Electroceram. 3, 4 (1999)

    Google Scholar 

  30. Y. Ando, T. Itoh, J. Appl. Phys. 61, 4 (1987)

    Google Scholar 

  31. B.X. Du, Z.L. Li, Z.R. Yang, IEEE Trans. Dielectr. Electr. Insul. 23, 5 (2016)

    Google Scholar 

  32. C.Y. Liu, X.Q. Zheng, P. Peng, IEEE Trans. Plasma Sci. 43, 10 (2015)

    Google Scholar 

  33. X. Wang, J.K. Nelson, L.S. Schadler, IEEE Trans. Dielectr. Electr. Insul. 17, 6 (2010)

    Google Scholar 

  34. L.N. Ho, H. Nishikawa, T. Takemoto, J. Mater. Sci-Mater. El. 22, 5 (2011)

    Google Scholar 

  35. P.P. Budenstein, IEEE Trans. Dielectr. Electr. Insul. 15, 3 (1980)

    Google Scholar 

  36. M.G. Danikas, T. Tanaka, IEEE Electr. Insul. Mag. 25, 4 (2009)

    Google Scholar 

  37. S.Y. Yu, H. Ishii, K. Tohgo, Y.T. Cho, D.F. Diao, Wear 213, 1 (1997)

    Google Scholar 

  38. Y. Peng, Z.J. Peng, X.Y. Ren, H.Y. Rong, C.B. Wang, Z.Q. Fu, L.H. Qi, H.Z. Miao, Int. J. Refract. Met. H. (2012). https://doi.org/10.1016/j.ijrmhm.2012.03.008

    Google Scholar 

  39. L. Qiao, K.L. Zhu, H.S. Tan, X. Yan, L.H. Zheng, S.H. Dong, Mater. Res. Express. 8, 4 (2021)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. U20A20308, 51977050, 52007042), Natural Science Foundation of Heilongjiang Province (No. TD2019E002), China Postdoctoral Science Foundation (Nos. 2021T140166, 2018M640303), Youth Innovative Talents Training Plan of Ordinary Undergraduate Colleges in Heilongjiang (No. UNPYSCT-2020178, UNPYSCT-2020180).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conceptualization, methodology, preparation, investigation, data analysis, writing original draft, reviewing and editing.

Corresponding author

Correspondence to Tiandong Zhang.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4420 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chi, Q., Fang, H., Meng, Z. et al. Improved electrical, thermal, and mechanical properties of silicone rubber-based composite dielectrics by introducing one-dimensional SiC fillers. J Mater Sci: Mater Electron 33, 21336–21350 (2022). https://doi.org/10.1007/s10854-022-08928-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08928-w

Navigation